Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;46(1):65-77.
doi: 10.1385/CBB:46:1:65.

Organization and function of septate junctions: an evolutionary perspective

Affiliations
Review

Organization and function of septate junctions: an evolutionary perspective

Swati Banerjee et al. Cell Biochem Biophys. 2006.

Abstract

In most cell types, distinct forms of intercellular junctions have been visualized at the ultrastructural level. Among these, the septate junctions are thought to seal the neighboring cells and thus to function as the paracellular barriers. The most extensively studied form of septate junctions, referred to as the pleated septate junctions, is ultrastructurally distinct with an electron-dense ladder-like arrangement of transverse septa present in invertebrates as well as vertebrates. In invertebrates, such as the fruit fly Drosophila melanogaster, septate junctions are present in all ectodermally derived epithelia, imaginal discs, and the nervous system. In vertebrates, septate junctions are present in the myelinated nerves at the paranodal interface between the myelin loops and the axonal membrane. In this review, we present an evolutionary perspective of septate junctions, especially their initial identification across phyla, and discuss many common features of their morphology, molecular organization, and functional similarities in invertebrates and vertebrates.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources