Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae
- PMID: 16944946
- DOI: 10.1021/pr060161n
Statistical analysis of membrane proteome expression changes in Saccharomyces cerevisiae
Abstract
We have devised an approach for analyzing shotgun proteomics datasets based on the normalized spectral abundance factor that can be used for quantitative proteomics analysis. Three biological replicates of samples enriched for plasma membranes were isolated from S. cerevisiae grown in 14N-rich media and 15N-minimal media and analyzed via quantitative multidimensional protein identification technology. The natural log transformation of NSAF values from S. cerevisiae cells grown in 14N YPD media and 15N-minimal media had a normal distribution. The t-test analysis demonstrated 221 of 1316 proteins were significantly overexpressed in one or the other growth conditions with a p value <0.05. Notably, amino acid transporters were among the 14 membrane proteins that were significantly upregulated in cells grown in minimal media, and we functionally validated these increases in protein expression with radioisotope uptake assays for selected proteins.
Similar articles
-
Quantitative shotgun proteomics using a protease with broad specificity and normalized spectral abundance factors.Mol Biosyst. 2007 May;3(5):354-60. doi: 10.1039/b701483j. Epub 2007 Apr 10. Mol Biosyst. 2007. PMID: 17460794
-
Correlation of relative abundance ratios derived from peptide ion chromatograms and spectrum counting for quantitative proteomic analysis using stable isotope labeling.Anal Chem. 2005 Oct 1;77(19):6218-24. doi: 10.1021/ac050846r. Anal Chem. 2005. PMID: 16194081
-
The proteomic response of Saccharomyces cerevisiae in very high glucose conditions with amino acid supplementation.J Proteome Res. 2008 Nov;7(11):4766-74. doi: 10.1021/pr800331s. Epub 2008 Sep 23. J Proteome Res. 2008. PMID: 18808174
-
Proteomic analysis of Saccharomyces cerevisiae.Expert Rev Proteomics. 2007 Dec;4(6):793-813. doi: 10.1586/14789450.4.6.793. Expert Rev Proteomics. 2007. PMID: 18067417 Review.
-
The early steps of glucose signalling in yeast.FEMS Microbiol Rev. 2008 Jul;32(4):673-704. doi: 10.1111/j.1574-6976.2008.00117.x. FEMS Microbiol Rev. 2008. PMID: 18559076 Review.
Cited by
-
Aberrant astrocyte protein secretion contributes to altered neuronal development in multiple models of neurodevelopmental disorders.Nat Neurosci. 2022 Sep;25(9):1163-1178. doi: 10.1038/s41593-022-01150-1. Epub 2022 Aug 30. Nat Neurosci. 2022. PMID: 36042312 Free PMC article.
-
Comprehensive proteomics analysis of glycosomes from Leishmania donovani.OMICS. 2015 Mar;19(3):157-70. doi: 10.1089/omi.2014.0163. OMICS. 2015. PMID: 25748437 Free PMC article.
-
Quantitative Proteomics of an Amphibian Pathogen, Batrachochytrium dendrobatidis, following Exposure to Thyroid Hormone.PLoS One. 2015 Jun 5;10(6):e0123637. doi: 10.1371/journal.pone.0123637. eCollection 2015. PLoS One. 2015. PMID: 26046527 Free PMC article.
-
Evidence That G-quadruplex DNA Accumulates in the Cytoplasm and Participates in Stress Granule Assembly in Response to Oxidative Stress.J Biol Chem. 2016 Aug 19;291(34):18041-57. doi: 10.1074/jbc.M116.718478. Epub 2016 Jul 1. J Biol Chem. 2016. PMID: 27369081 Free PMC article.
-
A complete and flexible workflow for metaproteomics data analysis based on MetaProteomeAnalyzer and Prophane.Nat Protoc. 2020 Oct;15(10):3212-3239. doi: 10.1038/s41596-020-0368-7. Epub 2020 Aug 28. Nat Protoc. 2020. PMID: 32859984
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases