Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep;231(8):1287-99.
doi: 10.1177/153537020623100802.

Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver

Affiliations
Free article
Review

Flavonoids attenuate cardiovascular disease, inhibit phosphodiesterase, and modulate lipid homeostasis in adipose tissue and liver

Michael R Peluso. Exp Biol Med (Maywood). 2006 Sep.
Free article

Abstract

Plant flavonoids are widely distributed polyphenolic compounds of the human diet. They consist of six major classes based on specific structural differences: flavonols, flavones, flavanones, catechins, anthocyanidins, and isoflavones. All of the major classes of flavonoids are comprised of three six-membered rings: an aromatic A-ring fused to a heterocyclic C-ring that is attached through a single carbon-carbon bond to an aromatic Bring. Population studies have shown that flavonoid intake is inversely correlated with mortality from cardiovascular disease, and numerous flavonoids of dietary significance have been shown to beneficially impact parameters associated with atherosclerosis, including lipoprotein oxidation, blood platelet aggregation, and vascular reactivity. Therapeutic effects of flavonoids on platelet aggregability and blood pressure have been attributed to competitive inhibition of cyclic nucleotide phosphodiesterase (PDE), an elevation in cAMP level, and subsequent activation of protein kinase A (cAMP-dependent protein kinase). In addition, flavonoids may induce neutral lipid hydrolysis from lipid stores through PDE inhibition in adipose tissue and liver. Indeed, the three-dimensional structure of many flavonoids is sterically and electrostatically compatible with the catalytic site of cAMP PDE3 and PDE4. Flavonoids have also been reported to suppress pathways of lipid biosynthesis and of very low-density lipoprotein production in cultured hepatocytes. Continued studies of the biochemical mechanisms underlying the biological effects of plant flavonoids may uncover new strategies for the treatment of cardiovascular disease, as well as associated conditions such as obesity, hepatic steatosis, and Type 2 diabetes.

PubMed Disclaimer

LinkOut - more resources