Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Mar;14(3):548-58.
doi: 10.1038/sj.cdd.4402030. Epub 2006 Sep 1.

DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells

Affiliations

DNA damaging agent-induced autophagy produces a cytoprotective adenosine triphosphate surge in malignant glioma cells

M Katayama et al. Cell Death Differ. 2007 Mar.

Abstract

Although autophagy enhances cell survival in nutrient-deprived cells by increasing adenosine triphosphate (ATP) production, it remains unclear if autophagy functions similarly in cells treated with cytotoxic chemotherapy agents. To address this issue, we measured both the ability of DNA damaging agents (Temozolomide, and Etoposide) to induce an autophagy-dependent production of ATP, and the effects of modulation of autophagy on drug-induced cell death. Both drugs induced an autophagy-associated increase in ATP production in multiple glioma cell lines. The drug-induced ATP surge could not be blocked by glucose starvation, but could be blocked by preincubation with the autophagy inhibitor 3-methyladenine (3-MA), an siRNA targeting beclin 1, or the mitochondrial inhibitor oligomycin. Inhibition of autophagy-induced ATP production increased non-apoptotic cell death associated with micronucleation, while restoration of the 3-MA-inhibited ATP surge by addition of pyruvate suppressed cell death. These results show that DNA damaging agents induce an autophagy-associated ATP surge that protects cells and may contribute to drug resistance.

PubMed Disclaimer

MeSH terms

LinkOut - more resources