Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Apr;20(2):90-103.
doi: 10.1002/nbm.1085.

Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis

Affiliations

Quantitative MRI-pathology correlations of brain white matter lesions developing in a non-human primate model of multiple sclerosis

Erwin L A Blezer et al. NMR Biomed. 2007 Apr.

Abstract

Experimental autoimmune encephalomyelitis (EAE) induced with recombinant human myelin/oligodendrocyte glycoprotein in the common marmoset is a useful preclinical model of multiple sclerosis in which white matter lesions can be well visualized with MRI. In this study we characterized lesion progression with quantitative in vivo MRI (4.7 T; T(1) relaxation time +/- Gd-DTPA; T(2) relaxation time; magnetization transfer ratio, MTR, imaging) and correlated end stage MRI presentation with quantitative ex vivo MRI (formaldehyde fixed brains; T(1) and T(2) relaxation times; MTR) and histology. The histopathological characterization included axonal density measurements and the numeric quantification of infiltrated macrophages expressing markers for early active [luxol fast blue (LFB) or migration inhibition factor-related protein-14 positive] or late active/inactive [periodic acid Schiff (PAS) positive] demyelinating lesion. MRI experiments were done every two weeks until the monkeys were sacrificed with severe EAE-related motor deficits. Compared with the normal appearing white matter, lesions showed an initial increase in T(1) relaxation times, leakage of Gd-DTPA and decrease in MTR values. The progressive enlargement of lesions was associated with stabilized T(1) values, while T(2) initially increased and stabilized thereafter and MTR remained decreased. Gd-DTPA leakage was highly variable throughout the experiment. MRI characteristics of the cortex and (normal appearing) white matter did not change during the experiment. We observed that in vivo MTR values correlated positively with the number of early active (LFB+) and negatively with late active (PAS+) macrophages. Ex vivo MTR and relaxation times correlated positively with the number of PAS-positive macrophages. None of the investigated MRI parameters correlated with axonal density.

PubMed Disclaimer

Publication types

Substances

LinkOut - more resources