Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 1990 Jul 15;265(20):11936-41.

Expression and synthesis of high mobility group chromosomal proteins in different rat skeletal cell lines during myogenesis

Affiliations
  • PMID: 1694850
Free article
Comparative Study

Expression and synthesis of high mobility group chromosomal proteins in different rat skeletal cell lines during myogenesis

N Begum et al. J Biol Chem. .
Free article

Abstract

The synthesis, turnover, and expression of all the major high mobility group (HMG) chromosomal proteins was studied in different rat skeletal myogenic cell lines. Whereas pulse-chase experiments revealed a similar half-life (greater than 2 cell generations) for all the HMG proteins in both L8 myoblasts and myotubes, [3H]lysine incorporation data indicated a 2- to 4-fold greater incorporation of the label in the HMG proteins in proliferating myoblasts relative to the nondividing myotubes. Analysis of the HMG-1, -14, and -17 mRNAs during myogenesis showed a significant down-regulation in L6 and L8 myotubes compared to the myoblasts. However, the timing of the shift and the extent of down-regulation was cell type-dependent, being more pronounced in L6 myotubes at fusion compared to 4 days postfusion in L8 myotubes. By contrast, L8-derived fusion-defective fu-1 cells over the same period of growth showed no change in HMG-14/17 mRNA levels. HMG-I(Y) protein isoforms, noted for the first time in rat myoblasts, like their counterparts, seemed to be stable and showed a precipitous reduction in their mRNAs during myogenesis. The results suggest a cell type-specific correlation between HMG expression and cell proliferation; they also argue for their role in maintenance of the cell's state of differentiation.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources