Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 1:3:13.
doi: 10.1186/1742-9994-3-13.

The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica--and the first record for a putative Atpase subunit 8 gene in marine bivalves

Affiliations

The complete sequences and gene organisation of the mitochondrial genomes of the heterodont bivalves Acanthocardia tuberculata and Hiatella arctica--and the first record for a putative Atpase subunit 8 gene in marine bivalves

Hermann Dreyer et al. Front Zool. .

Abstract

Background: Mitochondrial (mt) gene arrangement is highly variable among molluscs and especially among bivalves. Of the 30 complete molluscan mt-genomes published to date, only one is of a heterodont bivalve, although this is the most diverse taxon in terms of species numbers. We determined the complete sequence of the mitochondrial genomes of Acanthocardia tuberculata and Hiatella arctica, (Mollusca, Bivalvia, Heterodonta) and describe their gene contents and genome organisations to assess the variability of these features among the Bivalvia and their value for phylogenetic inference.

Results: The size of the mt-genome in Acanthocardia tuberculata is 16.104 basepairs (bp), and in Hiatella arctica 18.244 bp. The Acanthocardia mt-genome contains 12 of the typical protein coding genes, lacking the Atpase subunit 8 (atp8) gene, as all published marine bivalves. In contrast, a complete atp8 gene is present in Hiatella arctica. In addition, we found a putative truncated atp8 gene when re-annotating the mt-genome of Venerupis philippinarum. Both mt-genomes reported here encode all genes on the same strand and have an additional trnM. In Acanthocardia several large non-coding regions are present. One of these contains 3.5 nearly identical copies of a 167 bp motive. In Hiatella, the 3' end of the NADH dehydrogenase subunit (nad)6 gene is duplicated together with the adjacent non-coding region. The gene arrangement of Hiatella is markedly different from all other known molluscan mt-genomes, that of Acanthocardia shows few identities with the Venerupis philippinarum. Phylogenetic analyses on amino acid and nucleotide levels robustly support the Heterodonta and the sister group relationship of Acanthocardia and Venerupis. Monophyletic Bivalvia are resolved only by a Bayesian inference of the nucleotide data set. In all other analyses the two unionid species, being to only ones with genes located on both strands, do not group with the remaining bivalves.

Conclusion: The two mt-genomes reported here add to and underline the high variability of gene order and presence of duplications in bivalve and molluscan taxa. Some genomic traits like the loss of the atp8 gene or the encoding of all genes on the same strand are homoplastic among the Bivalvia. These characters, gene order, and the nucleotide sequence data show considerable potential of resolving phylogenetic patterns at lower taxonomic levels.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Gene order of Katharina, Acanthocardia, Hiatella and Venerupis. Linearized representation of the mitochondrial gene arrangement in Acanthocardia tuberculata and Hiatella arctica, in comparison with the near-plesiomorphic condition in the polyplacophoran Katharina tunicata and the third heterodont bivalve,Venerupis philipinarium. Genes encoded on the opposite strand are underlined. The bars indicate identical gene junctions.
Figure 2
Figure 2
Alignment of the large duplicated regions in Acanthocardia tuberculata and Hiatella arctica.
Figure 3
Figure 3
Cloverleaf structures of the 23 tRNA genes in the mitochondrial genome of Acanthocardia tuberculata.
Figure 4
Figure 4
Cloverleaf structures of the 23 tRNA genes in the mitochondrial genome of Hiatella arctica.
Figure 5
Figure 5
Phylogenetic analyses. Bayesian trees of the amino acid sequences of all protein coding genes (left) and nucleotide sequences of the protein coding genes and the rrnL gene (right). Bivalve species are in black font (Heterodonta in bold), Gastropoda in green, Cephalopoda in blue, Scaphopoda in magenta, Polyplacophora in red and the outgroup taxa in grey font. Posterior probabilities (above) and parsimony bootstrap values (below) are given for each branch.
Figure 6
Figure 6
Alignment of the atp8 genes of Hiatella arctica, Venerupis philippinarum and Katharina tunicata.

References

    1. Wolstenholme DR. Animal mitochondrial DNA: Structure and evolution. Int Rev Cytol. 1992;141:173–216. - PubMed
    1. Boore JL, Staton JL. The mitochondrial genome of the sipunculid Phascolopsis gouldii supports its association with Annelida rather than Mollusca. Mol Biol Evol. 2002;19:127–137. - PubMed
    1. Boore JL. Animal mitochondrial genomes. Nucleic Acids Res. 1999;27:1767–1780. doi: 10.1093/nar/27.8.1767. - DOI - PMC - PubMed
    1. Stewart DT, Saavedra C, Stanwood RR, Ball AO, Zouros E. Male and female mitochondrial DNA lineages in the Blue Mussel Mytilus. Mol Biol Evol. 1995;12:735–747. - PubMed
    1. Hoeh WR, Stewart DT, Sutherland BE, Zouros E. Multiple origins of gender-associated mitochondrial DNA lineages in bivalves (Mollusca: Bivalvia) Evolution. 1996;50:2276–2286. doi: 10.2307/2410697. - DOI - PubMed

LinkOut - more resources