Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;21(2):238-46.
doi: 10.1016/j.bbi.2006.07.001. Epub 2006 Sep 1.

Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury

Affiliations

Efficacy of propentofylline, a glial modulating agent, on existing mechanical allodynia following peripheral nerve injury

Vivianne L Tawfik et al. Brain Behav Immun. 2007 Feb.

Abstract

Increasing evidence points to a role for spinal neuroimmune dysregulation (glial cell activation and cytokine expression) in the pathogenesis of chronic pain. Suppression of astrocytic and microglial activation with the methylxanthine derivative, propentofylline, pre-emptively attenuates the development of nerve injury-induced allodynia. Currently, we investigated the ability of systemic propentofylline to reverse existing, long-term allodynia after nerve injury--a clinically relevant paradigm. Rats received L5 spinal nerve transection or sham surgery and the development of mechanical allodynia was assessed daily for 2 weeks, at which time injured rats exhibited robust responses to non-noxious von Frey filaments. On days 14-27, rats received either saline or 101 mg/kg propentofylline by intraperitoneal (i.p.) injection. On day 28 or 42 (after a 14-day drug washout period), lumbar spinal cord sections were processed for assessment of astrocytic glial fibrillary acidic protein (GFAP) and microglial OX-42 (antibody against CR3/CD11b). Propentofylline treatment to nerve injured rats resulted in significant reversal of allodynia that lasted throughout the 14-day washout period. Spinal microglial activation was observed at days 28 and 42 post-injury at the protein level, in the absence of mRNA level changes. Less robust increases in GFAP immunoreactivity were observed at days 28 and 42 post-transection. Interestingly, propentofylline treatment suppressed microglial activation at both time points in this paradigm. Taken together, our results highlight the clinical potential of the glial modulating agent, propentofylline, for the treatment of neuropathic pain as well as a role for microglia in the long-term maintenance of allodynia.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms