Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;4(3):245-54.
doi: 10.1016/j.cmet.2006.07.007.

Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1

Affiliations
Free article

Regulation of insulin biosynthesis in pancreatic beta cells by an endoplasmic reticulum-resident protein kinase IRE1

Kathryn L Lipson et al. Cell Metab. 2006 Sep.
Free article

Abstract

In pancreatic beta cells, the endoplasmic reticulum (ER) is an important site for insulin biosynthesis and the folding of newly synthesized proinsulin. Here, we show that IRE1alpha, an ER-resident protein kinase, has a crucial function in insulin biosynthesis. IRE1alpha phosphorylation is coupled to insulin biosynthesis in response to transient exposure to high glucose; inactivation of IRE1alpha signaling by siRNA or inhibition of IRE1alpha phosphorylation hinders insulin biosynthesis. IRE1 activation by high glucose does not accompany XBP-1 splicing and BiP dissociation but upregulates its target genes such as WFS1. Thus, IRE1 signaling activated by transient exposure to high glucose uses a unique subset of downstream components and has a beneficial effect on pancreatic beta cells. In contrast, chronic exposure of beta cells to high glucose causes ER stress and hyperactivation of IRE1, leading to the suppression of insulin gene expression. IRE1 signaling is therefore a potential target for therapeutic regulation of insulin biosynthesis.

PubMed Disclaimer

Comment in

Publication types

MeSH terms