Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov 3;281(44):33554-65.
doi: 10.1074/jbc.M603937200. Epub 2006 Sep 1.

The human OCT-4 isoforms differ in their ability to confer self-renewal

Affiliations
Free article

The human OCT-4 isoforms differ in their ability to confer self-renewal

Jungwoon Lee et al. J Biol Chem. .
Free article

Abstract

OCT-4 transcription factors play an important role in maintaining the pluripotent state of embryonic stem cells and may prevent expression of genes activated during differentiation. Human OCT-4 isoform mRNAs encode proteins that have identical POU DNA binding domains and C-terminal domains but differ in their N-terminal domains. We report here the cloning and characterization of the human OCT-4B isoform. Human OCT-4B cDNA encodes a 265-amino acid protein with a predicted molecular mass of 30 kDa. Embryonic stem (ES) cell-based complementation assays using ZHBTc4 ES cells showed that unlike human OCT-4A, OCT-4B cannot sustain ES cell self-renewal. In addition, OCT-4B does not bind to a probe carrying the OCT-4 consensus binding sequence, and we demonstrate that two separate regions of its N-terminal domain are responsible for inhibiting DNA binding. We also demonstrate that OCT-4B is mainly localized to the cytoplasm. Overexpression of OCT-4B did not activate transcription from OCT-4-dependent promoters, although OCT-4A did as reported previously. Furthermore, transcriptional activation by human OCT-4A was not inhibited by co-expression of OCT-4B. Taken together, these data suggest that the DNA binding, transactivation, and abilities to confer self-renewal of the human OCT-4 isoforms differ.

PubMed Disclaimer

Publication types

LinkOut - more resources