Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue
- PMID: 16952019
- DOI: 10.1007/s11538-006-9108-6
Threshold conditions for a non-autonomous epidemic system describing the population dynamics of dengue
Erratum in
- Bull Math Biol. 2007 Aug;69(6):2117
Abstract
A non-autonomous dynamical system, in which the seasonal variation of a mosquito vector population is modeled, is proposed to investigate dengue overwintering. A time-dependent threshold, R(t), is deduced such that when its yearly average, denoted by R, is less than 1, the disease does not invade the populations and when R is greater than 1 it does. By not invading the population we mean that the number of infected individuals always decrease in subsequent seasons of transmission. Using the same threshold, all the qualitative features of the resulting epidemic can be understood. Our model suggests that trans-ovarial infection in the mosquitoes facilitates dengue overwintering. We also explain the delay between the peak in the mosquitoes population and the peak in dengue cases.
Similar articles
-
Stochastic eco-epidemiological model of dengue disease transmission by Aedes aegypti mosquito.Math Biosci. 2010 Jan;223(1):32-46. doi: 10.1016/j.mbs.2009.10.005. Epub 2009 Oct 25. Math Biosci. 2010. PMID: 19861133
-
Distribution and seasonality of vertically transmitted dengue viruses in Aedes mosquitoes in arid and semi-arid areas of Rajasthan, India.J Vector Borne Dis. 2008 Mar;45(1):56-9. J Vector Borne Dis. 2008. PMID: 18399318
-
A stochastic population dynamics model for Aedes aegypti: formulation and application to a city with temperate climate.Bull Math Biol. 2006 Nov;68(8):1945-74. doi: 10.1007/s11538-006-9067-y. Epub 2006 Jul 11. Bull Math Biol. 2006. PMID: 16832731
-
[Dengue and its vectors in Brazil].Bull Soc Pathol Exot. 1996;89(2):128-35; discussion 136. Bull Soc Pathol Exot. 1996. PMID: 8924771 Review. French.
-
The history and evolution of human dengue emergence.Adv Virus Res. 2008;72:1-76. doi: 10.1016/S0065-3527(08)00401-6. Adv Virus Res. 2008. PMID: 19081488 Review.
Cited by
-
The seasonal reproduction number of dengue fever: impacts of climate on transmission.PeerJ. 2015 Jul 9;3:e1069. doi: 10.7717/peerj.1069. eCollection 2015. PeerJ. 2015. Retraction in: PeerJ. 2016 Oct 4;3:e1069/retraction. doi: 10.7717/peerj.1069/retraction. PMID: 26213648 Free PMC article. Retracted.
-
Estimating the optimal control of zoonotic visceral leishmaniasis by the use of a mathematical model.ScientificWorldJournal. 2013 Aug 5;2013:810380. doi: 10.1155/2013/810380. eCollection 2013. ScientificWorldJournal. 2013. PMID: 23990761 Free PMC article.
-
Zika emergence, persistence, and transmission rate in Colombia: a nationwide application of a space-time Markov switching model.Sci Rep. 2024 May 1;14(1):10003. doi: 10.1038/s41598-024-59976-7. Sci Rep. 2024. PMID: 38693192 Free PMC article.
-
Maximum equilibrium prevalence of mosquito-borne microparasite infections in humans.Comput Math Methods Med. 2013;2013:659038. doi: 10.1155/2013/659038. Epub 2013 Dec 24. Comput Math Methods Med. 2013. PMID: 24454539 Free PMC article.
-
Impact of combined vector-control and vaccination strategies on transmission dynamics of dengue fever: a model-based analysis.Health Care Manag Sci. 2015 Jun;18(2):205-17. doi: 10.1007/s10729-013-9263-x. Epub 2013 Dec 27. Health Care Manag Sci. 2015. PMID: 24370922
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources
Medical