Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Nov;63(22):2571-83.
doi: 10.1007/s00018-006-6243-z.

The identification of chemical intermediates in enzyme catalysis by the rapid quench-flow technique

Affiliations
Review

The identification of chemical intermediates in enzyme catalysis by the rapid quench-flow technique

T E Barman et al. Cell Mol Life Sci. 2006 Nov.

Abstract

Traditionally, enzyme transient kinetics have been studied by the stopped-flow and rapid quench-flow (QF) methods. Whereas stopped-flow is the more convenient, it suffers from two weaknesses: optically silent systems cannot be studied, and when there is a signal it cannot always be assigned to a particular step in the reaction pathway. QF is a chemical sampling method; reaction mixtures are aged for a few milliseconds or longer, 'stopped' by a quenching agent and the product or the intermediate is measured by a specific analytical method. Here we show that by exploiting the array of current analytical methods and different quenching agents, the QF method is a key technique for identifying, and for characterising kinetically, intermediates in enzyme reaction pathways and for determining the order by which bonds are formed or cleaved by enzymes acting on polymer substrates such as DNA.

PubMed Disclaimer

Publication types

LinkOut - more resources