3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation
- PMID: 16952943
- PMCID: PMC1595499
- DOI: 10.1128/JB.00825-06
3-Hydroxy-3-methylglutaryl-coenzyme A (CoA) synthase is involved in biosynthesis of isovaleryl-CoA in the myxobacterium Myxococcus xanthus during fruiting body formation
Abstract
Isovaleryl-coenzyme A (IV-CoA) is the starting unit for some secondary metabolites and iso-odd fatty acids in several bacteria. According to textbook biochemistry, IV-CoA is derived from leucine degradation, but recently an alternative pathway that branches from the well-known mevalonate-dependent isoprenoid biosynthesis has been described for myxobacteria. A double mutant was constructed in Myxococcus xanthus by deletion of genes involved in leucine degradation and disruption of mvaS encoding the 3-hydroxy-3-methylglutaryl-coenzyme A synthase. A dramatic decrease of IV-CoA-derived iso-odd fatty acids was observed for the mutant, confirming mvaS to be involved in the alternative pathway. Additional quantitative real-time reverse transcription-PCR experiments indicated that mvaS is transcriptionally regulated by isovalerate. Furthermore, feeding studies employing an intermediate specific for the alternative pathway revealed that this pathway is induced during fruiting body formation, which presumably increases the amount of IV-CoA available when leucine is limited.
Figures
References
-
- Altschul, S. F., W. Gish, W. Miller, E. W. Myers, and D. J. Lipman. 1990. Basic local alignment search tool. J. Mol. Biol. 215:403-410. - PubMed
-
- Bode, H. B., J. S. Dickschat, R. M. Kroppenstedt, S. Schulz, and R. Müller. 2005. Biosynthesis of iso-fatty acids in myxobacteria: iso-even fatty acids are derived from (alpha)-oxidation of iso-odd fatty acids. J. Am. Chem. Soc. 127:532-533. - PubMed
-
- Bode, H. B., S. C. Wenzel, H. Irschik, G. Höfle, and R. Müller. 2004. Unusual biosynthesis of leupyrrins in the myxobacterium Sorangium cellulosum. Angew. Chem. Int. Ed. Engl. 43:4163-4167. - PubMed
-
- Bode, H. B., B. Zeggel, B. Silakowski, S. C. Wenzel, H. Reichenbach, and R. Müller. 2003. Steroid biosynthesis in prokaryotes: identification of myxobacterial steroids and cloning of the first bacterial 2,3(S)-oxidosqualene cyclase from the myxobacterium Stigmatella aurantiaca. Mol. Microbiol. 47:471-481. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
