Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin
- PMID: 16953586
- PMCID: PMC2528006
- DOI: 10.1021/bi061098i
Induced chirality of the light-harvesting carotenoid salinixanthin and its interaction with the retinal of xanthorhodopsin
Abstract
In xanthorhodopsin, a retinal protein-carotenoid complex of Salinibacter ruber, the carotenoid salinixanthin functions as a light-harvesting antenna in supplying additional excitation energy for retinal isomerization and proton transport. Another retinal protein, archaerhodopsin, has been shown to contain a carotenoid, bacterioruberin, but without an antenna function. We report here that the binding site confers a chiral geometry on salinixanthin in xanthorhodopsin and confirm that the same is true for bacterioruberin in archaerhodopsin. Cell membranes containing these rhodopsins exhibit CD spectra with sharp positive bands in the visible region where the carotenoids absorb, and in the case of xanthorhodopsin a negative band at 536 nm, as well as bands in the UV region. The carotenoid in ethanol has very weak optical activity in the visible region of the spectrum. Denaturation of the opsin upon deprotonation of the Schiff base at pH 12.5 eliminates the induced CD bands in both proteins. In one of these proteins, but not in the other, the carotenoid binding site depends entirely on the retinal. Hydrolysis of the retinal Schiff base of xanthorhodopsin with hydroxylamine eliminates the induced CD bands of salinixanthin. In contrast, hydrolysis of the Schiff base in archaerhodopsin does not abolish the CD bands of bacterioruberin. Thus, consistent with its antenna function, the carotenoid binding site interacts closely with the retinal only in xanthorhodopsin, and this interaction is the major source of the CD bands. In this protein, protonation of the counterion with a decrease in pH from 8 to 5 causes significant changes in the CD spectrum. The observed spectral features suggest that binding of salinixanthin in xanthorhodopsin involves the cyclohexenone ring of the carotenoid and its conformational heterogeneity is restricted.
Figures






Similar articles
-
Removal and reconstitution of the carotenoid antenna of xanthorhodopsin.J Membr Biol. 2011 Jan;239(1-2):95-104. doi: 10.1007/s00232-010-9322-x. Epub 2010 Nov 21. J Membr Biol. 2011. PMID: 21104180 Free PMC article.
-
Reconstitution of Gloeobacter violaceus rhodopsin with a light-harvesting carotenoid antenna.Biochemistry. 2009 Nov 24;48(46):10948-55. doi: 10.1021/bi901552x. Biochemistry. 2009. PMID: 19842712 Free PMC article.
-
Xanthorhodopsin: a proton pump with a light-harvesting carotenoid antenna.Science. 2005 Sep 23;309(5743):2061-4. doi: 10.1126/science.1118046. Science. 2005. PMID: 16179480 Free PMC article.
-
Xanthorhodopsin: Proton pump with a carotenoid antenna.Cell Mol Life Sci. 2007 Sep;64(18):2323-8. doi: 10.1007/s00018-007-7167-y. Cell Mol Life Sci. 2007. PMID: 17571211 Free PMC article. Review.
-
Salinibacter: an extremely halophilic bacterium with archaeal properties.FEMS Microbiol Lett. 2013 May;342(1):1-9. doi: 10.1111/1574-6968.12094. Epub 2013 Feb 25. FEMS Microbiol Lett. 2013. PMID: 23373661 Review.
Cited by
-
Retinal-Carotenoid Interactions in a Sodium-Ion-Pumping Rhodopsin: Implications on Oligomerization and Thermal Stability.J Phys Chem B. 2023 Mar 16;127(10):2128-2137. doi: 10.1021/acs.jpcb.2c07502. Epub 2023 Mar 1. J Phys Chem B. 2023. PMID: 36857147 Free PMC article.
-
Removal and reconstitution of the carotenoid antenna of xanthorhodopsin.J Membr Biol. 2011 Jan;239(1-2):95-104. doi: 10.1007/s00232-010-9322-x. Epub 2010 Nov 21. J Membr Biol. 2011. PMID: 21104180 Free PMC article.
-
The biochemical basis for structural diversity in the carotenoids of chlorophototrophic bacteria.Photosynth Res. 2008 Aug;97(2):121-40. doi: 10.1007/s11120-008-9312-3. Epub 2008 Jun 6. Photosynth Res. 2008. PMID: 18535920 Review.
-
Diversity, Mechanism, and Optogenetic Application of Light-Driven Ion Pump Rhodopsins.Adv Exp Med Biol. 2021;1293:89-126. doi: 10.1007/978-981-15-8763-4_6. Adv Exp Med Biol. 2021. PMID: 33398809 Review.
-
Occurrence of viable, red-pigmented haloarchaea in the plumage of captive flamingoes.Sci Rep. 2015 Nov 10;5:16425. doi: 10.1038/srep16425. Sci Rep. 2015. PMID: 26553382 Free PMC article.
References
-
- Antón J, Oren A, Benlloch S, Rodríguez-Valera F, Amann R, Rosselló-Mora R. Salinibacter ruber gen. nov., sp. nov., a novel, extremely halophilic member of the Bacteria from saltern crystallizer ponds. Int. J. Syst. Evol. Micrbiol. 2002;52:485–491. - PubMed
-
- Lutnaes BF, Oren A, Liaaen-Jensen S. New C-40-carotenoid acyl glycoside as principal carotenoid in Salinibacter ruber, an extremely halophilic eubacterium. J. Nat. Prod. 2002;65:1340–1343. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources