Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 13;128(36):11916-20.
doi: 10.1021/ja062232p.

Isolation, structure, and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy

Affiliations

Isolation, structure, and absolute stereochemistry of platensimycin, a broad spectrum antibiotic discovered using an antisense differential sensitivity strategy

Sheo B Singh et al. J Am Chem Soc. .

Erratum in

  • J Am Chem Soc. 2006 Dec 6;128(48):15547

Abstract

Fatty acids are essential for survival of bacteria and are synthesized by a series of enzymes including the elongation enzymes, beta-ketoacyl acyl carrier protein synthase I/II (FabF/B). Inhibition of fatty acid synthesis is one of the new targets for the discovery and development of antibacterial agents. Platensimycin (1a) is a novel broad spectrum Gram-positive antibiotic produced by Streptomyces platensis. It was discovered by target-based whole-cell screening strategy using antisense differential sensitivity assay. It inhibits bacterial growth by selectively inhibiting condensing enzyme FabF of the fatty acid synthesis pathway and was isolated by a two-step process, a capture step followed by reversed-phase HPLC. The structure was elucidated by 2D NMR methods and confirmed by X-ray crystallographic analysis of a bromo derivative. It was determined that potential reactivity of the enone moiety does not play a key role in the biological activity of platensimycin. However, cyclohexenone ring conformation renders for the stronger binding interaction with the enzyme. The isolation, structure elucidation, derivatization, and biological activity of 6,7-dihydroplatensimycin are described.

PubMed Disclaimer

MeSH terms