Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups
- PMID: 16953642
- DOI: 10.1021/ja063653+
Chemical functionalization of boron-nitride nanotubes with NH3 and amino functional groups
Abstract
We have investigated properties of chemically modified boron nitride nanotubes (BNNTs) with NH(3) and four other amino functional groups (NH(2)CH(3), NH(2)CH(2)OCH(3), NH(2)CH(2)COOH, and NH(2)COOH) on the basis of density functional theory calculations. Unlike the case of carbon nanotubes, we found that NH(3) can be chemically adsorbed on top of the boron atom, with a charge transfer from NH(3) to the BNNT. The minimum-energy path calculation shows that a small energy barrier is encountered during the adsorption. Similarly, a small energy barrier (about 0.42 eV) is also involved in the desorption, suggesting that both adsorption and desorption can be realized even at room temperature. For chemically modified BNNTs with various amino functional groups, the adsorption energies are typically less than that of NH(3) on the BNNT. The trend of adsorption-energy change can be correlated with the trend of relative electron-withdrawing or -donating capability of the amino functional groups. Overall, the chemical modification of BNNTs with the amino groups results in little changes in the electronic properties of BNNTs. However, the chemical reactivity of the BNNTs can be enhanced by the chemical modification with the amino group containing -COOH.
Similar articles
-
The structural and electronic properties of amine-functionalized boron nitride nanotubes via ammonia plasmas: a density functional theory study.Nanotechnology. 2009 Apr 8;20(14):145703. doi: 10.1088/0957-4484/20/14/145703. Epub 2009 Mar 18. Nanotechnology. 2009. PMID: 19420533
-
The effects of O2 and H2O adsorbates on field-emission properties of an (8, 0) boron nitride nanotube: a density functional theory study.Nanotechnology. 2009 Feb 25;20(8):085704. doi: 10.1088/0957-4484/20/8/085704. Epub 2009 Feb 3. Nanotechnology. 2009. PMID: 19417465
-
Hydrogen adsorption on carbon-doped boron nitride nanotube.J Phys Chem B. 2006 Oct 26;110(42):21184-8. doi: 10.1021/jp061587s. J Phys Chem B. 2006. PMID: 17048943
-
Emerging Applications of Boron Nitride Nanotubes in Energy Harvesting, Electronics, and Biomedicine.ACS Omega. 2021 Aug 4;6(32):20722-20728. doi: 10.1021/acsomega.1c02586. eCollection 2021 Aug 17. ACS Omega. 2021. PMID: 34423180 Free PMC article. Review.
-
Boron nitride nanotubes: biocompatibility and potential spill-over in nanomedicine.Small. 2013 May 27;9(9-10):1672-85. doi: 10.1002/smll.201201315. Epub 2013 Feb 19. Small. 2013. PMID: 23423826 Review.
Cited by
-
Boron nitride nanotube based nanosensor for acetone adsorption: a DFT simulation.J Mol Model. 2013 Mar;19(3):1259-65. doi: 10.1007/s00894-012-1668-9. Epub 2012 Nov 20. J Mol Model. 2013. PMID: 23179768
-
Boron nitride nanotubes for spintronics.Sensors (Basel). 2014 Sep 22;14(9):17655-85. doi: 10.3390/s140917655. Sensors (Basel). 2014. PMID: 25248070 Free PMC article.
-
Adsorption of carbon dioxide and ammonia in transition metal-doped boron nitride nanotubes.J Mol Model. 2019 Nov 26;25(12):359. doi: 10.1007/s00894-019-4235-9. J Mol Model. 2019. PMID: 31773288
-
Novel BN-COOH@ZrO2/GO Composite for Enhanced Electrical Conductivity and Electrochemical Detection of Diclofenac.ACS Omega. 2024 Dec 21;10(1):1373-1387. doi: 10.1021/acsomega.4c08966. eCollection 2025 Jan 14. ACS Omega. 2024. PMID: 39829450 Free PMC article.
-
Density functional investigation of CO adsorption on Ni-doped single-walled armchair (5,5) boron nitride nanotubes.J Mol Model. 2013 Jan;19(1):239-45. doi: 10.1007/s00894-012-1537-6. Epub 2012 Aug 4. J Mol Model. 2013. PMID: 22864627
LinkOut - more resources
Full Text Sources
Other Literature Sources