Information-theoretic latent distribution modeling: distinguishing discrete and continuous latent variable models
- PMID: 16953702
- DOI: 10.1037/1082-989X.11.3.228
Information-theoretic latent distribution modeling: distinguishing discrete and continuous latent variable models
Abstract
Distinguishing between discrete and continuous latent variable distributions has become increasingly important in numerous domains of behavioral science. Here, the authors explore an information-theoretic approach to latent distribution modeling, in which the ability of latent distribution models to represent statistical information in observed data is emphasized. The authors conclude that loss of statistical information with a decrease in the number of latent values provides an attractive basis for comparing discrete and continuous latent variable models. Theoretical considerations as well as the results of 2 Monte Carlo simulations indicate that information theory provides a sound basis for modeling latent distributions and distinguishing between discrete and continuous latent variable models in particular.
Copyright 2006 APA
Publication types
MeSH terms
Grants and funding
LinkOut - more resources
Full Text Sources