Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice
- PMID: 16954369
- PMCID: PMC2118102
- DOI: 10.1084/jem.20052477
Differential impact of Ink4a and Arf on hematopoietic stem cells and their bone marrow microenvironment in Bmi1-deficient mice
Abstract
The polycomb group (PcG) protein Bmi1 plays an essential role in the self-renewal of hematopoietic and neural stem cells. Derepression of the Ink4a/Arf gene locus has been largely attributed to Bmi1-deficient phenotypes in the nervous system. However, its role in hematopoietic stem cell (HSC) self-renewal remained undetermined. In this study, we show that derepressed p16(Ink4a) and p19(Arf) in Bmi1-deficient mice were tightly associated with a loss of self-renewing HSCs. The deletion of both Ink4a and Arf genes substantially restored the self-renewal capacity of Bmi1(-/-) HSCs. Thus, Bmi1 regulates HSCs by acting as a critical failsafe against the p16(Ink4a)- and p19(Arf)-dependent premature loss of HSCs. We further identified a novel role for Bmi1 in the organization of a functional bone marrow (BM) microenvironment. The BM microenvironment in Bmi1(-/-) mice appeared severely defective in supporting hematopoiesis. The deletion of both Ink4a and Arf genes did not considerably restore the impaired BM microenvironment, leading to a sustained postnatal HSC depletion in Bmi1(-/-)Ink4a-Arf(-/-) mice. Our findings unveil a differential role of derepressed Ink4a and Arf on HSCs and their BM microenvironment in Bmi1-deficient mice. Collectively, Bmi1 regulates self-renewing HSCs in both cell-autonomous and nonautonomous manners.
Figures





Similar articles
-
Ink4a and Arf differentially affect cell proliferation and neural stem cell self-renewal in Bmi1-deficient mice.Genes Dev. 2005 Jun 15;19(12):1438-43. doi: 10.1101/gad.1299305. Genes Dev. 2005. PMID: 15964995 Free PMC article.
-
Bmi1 promotes hepatic stem cell expansion and tumorigenicity in both Ink4a/Arf-dependent and -independent manners in mice.Hepatology. 2010 Sep;52(3):1111-23. doi: 10.1002/hep.23793. Hepatology. 2010. PMID: 20648475
-
A novel zinc finger protein Zfp277 mediates transcriptional repression of the Ink4a/arf locus through polycomb repressive complex 1.PLoS One. 2010 Aug 24;5(8):e12373. doi: 10.1371/journal.pone.0012373. PLoS One. 2010. PMID: 20808772 Free PMC article.
-
A protein synthesis brake for hematopoietic stem cell maintenance.Genes Dev. 2022 Aug 1;36(15-16):871-873. doi: 10.1101/gad.350107.122. Genes Dev. 2022. PMID: 36207141 Free PMC article. Review.
-
Role of the polycomb group gene BMI1 in normal and leukemic hematopoietic stem and progenitor cells.Curr Opin Hematol. 2010 Jul;17(4):294-9. doi: 10.1097/MOH.0b013e328338c439. Curr Opin Hematol. 2010. PMID: 20308890 Review.
Cited by
-
Bmi-1 absence causes premature brain degeneration.PLoS One. 2012;7(2):e32015. doi: 10.1371/journal.pone.0032015. Epub 2012 Feb 20. PLoS One. 2012. PMID: 22363787 Free PMC article.
-
Bmi1 suppresses protein synthesis and promotes proteostasis in hematopoietic stem cells.Genes Dev. 2022 Aug 1;36(15-16):887-900. doi: 10.1101/gad.349917.122. Epub 2022 Sep 27. Genes Dev. 2022. PMID: 36167470 Free PMC article.
-
DNA damage: a sensible mediator of the differentiation decision in hematopoietic stem cells and in leukemia.Int J Mol Sci. 2015 Mar 17;16(3):6183-201. doi: 10.3390/ijms16036183. Int J Mol Sci. 2015. PMID: 25789504 Free PMC article. Review.
-
Specific overexpression of SIRT1 in mesenchymal stem cells rescues hematopoiesis niche in BMI1 knockout mice through promoting CXCL12 expression.Int J Biol Sci. 2022 Feb 28;18(5):2091-2103. doi: 10.7150/ijbs.63876. eCollection 2022. Int J Biol Sci. 2022. PMID: 35342358 Free PMC article.
-
An anticlastogenic function for the Polycomb Group gene Bmi1.Proc Natl Acad Sci U S A. 2011 Mar 29;108(13):5284-9. doi: 10.1073/pnas.1014263108. Epub 2011 Mar 14. Proc Natl Acad Sci U S A. 2011. PMID: 21402923 Free PMC article.
References
-
- Lund, A.H., and M. van Lohuizen. 2004. Polycomb complexes and silencing mechanisms. Curr. Opin. Cell Biol. 16:239–246. - PubMed
-
- Valk-Lingbeek, M.E., S.W.M. Bruggeman, and M. van Lohuizen. 2004. Stem cells and cancer: the polycomb connection. Cell. 118:409–418. - PubMed
-
- Iwama, A., H. Oguro, M. Negishi, Y. Kato, and H. Nakauchi. 2005. Epigenetic regulation of hematopoietic stem cell self-renewal by polycomb group genes. Int. J. Hematol. 81:294–300. - PubMed
-
- van der Lugt, N.M., J. Domen, K. Linders, M. van Roon, E. Robanus-Maandag, H. te Riele, M. van der Valk, J. Deschamps, M. Sofroniew, M. van Lohuizen, and A. Berns. 1994. Posterior transformation, neurological abnormalities, and severe hematopoietic defects in mice with a targeted deletion of the bmi-1 proto-oncogene. Genes Dev. 8:757–769. - PubMed
-
- Lessard, J., and G. Sauvageau. 2003. Bmi-1 determines proliferative capacity of normal and leukemic stem cells. Nature. 423:255–260. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Medical
Molecular Biology Databases