Proximal tubular handling of phosphate: A molecular perspective
- PMID: 16955105
- DOI: 10.1038/sj.ki.5001813
Proximal tubular handling of phosphate: A molecular perspective
Abstract
Members of the SLC34 gene family of solute carriers encode for three Na+-dependent phosphate (P i) cotransporter proteins, two of which (NaPi-IIa/SLC34A1 and NaPi-IIc/SLC34A3) control renal reabsorption of P i in the proximal tubule of mammals, whereas NaPi-IIb/SCLC34A2 mediates P i transport in organs other than the kidney. The P i transport mechanism has been extensively studied in heterologous expression systems and structure-function studies have begun to reveal the intricacies of the transport cycle at the molecular level using techniques such as cysteine scanning mutagenesis, and voltage clamp fluorometry. Moreover, sequence differences between the three types of cotransporters have been exploited to obtain information about the molecular determinants of hormonal sensitivity and electrogenicity. Renal handling of P i is regulated by hormonal and non-hormonal factors. Changes in urinary excretion of P i are almost invariably mirrored by changes in the apical expression of NaPi-IIa and NaPi-IIc in proximal tubules. Therefore, understanding the mechanisms that control the apical expression of NaPi-IIa and NaPi-IIc as well as their functional properties is critical to understanding how an organism achieves P i homeostasis.
Similar articles
-
An apical expression signal of the renal type IIc Na+-dependent phosphate cotransporter in renal epithelial cells.Am J Physiol Renal Physiol. 2010 Jul;299(1):F243-54. doi: 10.1152/ajprenal.00189.2009. Epub 2010 Apr 21. Am J Physiol Renal Physiol. 2010. PMID: 20410212
-
Magnesium stimulates renal phosphate reabsorption.Am J Physiol Renal Physiol. 2008 Oct;295(4):F1126-33. doi: 10.1152/ajprenal.00353.2007. Epub 2008 Aug 13. Am J Physiol Renal Physiol. 2008. PMID: 18701629
-
Role of the putative PKC phosphorylation sites of the type IIc sodium-dependent phosphate transporter in parathyroid hormone regulation.Clin Exp Nephrol. 2019 Jul;23(7):898-907. doi: 10.1007/s10157-019-01725-6. Epub 2019 Mar 21. Clin Exp Nephrol. 2019. PMID: 30895530
-
Renal phosphate handling and inherited disorders of phosphate reabsorption: an update.Pediatr Nephrol. 2019 Apr;34(4):549-559. doi: 10.1007/s00467-017-3873-3. Epub 2017 Dec 23. Pediatr Nephrol. 2019. PMID: 29275531 Review.
-
Phosphate transport kinetics and structure-function relationships of SLC34 and SLC20 proteins.Curr Top Membr. 2012;70:313-56. doi: 10.1016/B978-0-12-394316-3.00010-7. Curr Top Membr. 2012. PMID: 23177991 Review.
Cited by
-
Molecular Control of Phosphorus Homeostasis and Precision Treatment of Hypophosphatemic Disorders.Curr Mol Biol Rep. 2019 Jun;5(2):75-85. doi: 10.1007/s40610-019-0118-1. Epub 2019 Feb 9. Curr Mol Biol Rep. 2019. PMID: 31871877 Free PMC article.
-
Regulation of phosphate homeostasis by PTH, vitamin D, and FGF23.Annu Rev Med. 2010;61:91-104. doi: 10.1146/annurev.med.051308.111339. Annu Rev Med. 2010. PMID: 20059333 Free PMC article. Review.
-
Developmental changes in proximal tubule NaCl transport.Pediatr Nephrol. 2008 Feb;23(2):185-94. doi: 10.1007/s00467-007-0569-0. Epub 2007 Aug 8. Pediatr Nephrol. 2008. PMID: 17684771 Review.
-
GABARAP deficiency modulates expression of NaPi-IIa in renal brush-border membranes.Am J Physiol Renal Physiol. 2009 May;296(5):F1118-28. doi: 10.1152/ajprenal.90492.2008. Epub 2009 Feb 18. Am J Physiol Renal Physiol. 2009. PMID: 19225049 Free PMC article.
-
Shank2 contributes to the apical retention and intracellular redistribution of NaPiIIa in OK cells.Am J Physiol Cell Physiol. 2013 Mar;304(6):C561-73. doi: 10.1152/ajpcell.00189.2012. Epub 2013 Jan 16. Am J Physiol Cell Physiol. 2013. PMID: 23325414 Free PMC article.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases