Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;96(6):3532-7.
doi: 10.1152/jn.00625.2006. Epub 2006 Sep 6.

Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects

Affiliations
Free article

Load signals assist the generation of movement-dependent reflex reversal in the femur-tibia joint of stick insects

Turgay Akay et al. J Neurophysiol. 2006 Dec.
Free article

Abstract

Reinforcement of movement is an important mechanism by which sensory feedback contributes to motor control for walking. We investigate how sensory signals from movement and load sensors interact in controlling the motor output of the stick insect femur-tibia (FT) joint. In stick insects, flexion signals from the femoral chordotonal organ (fCO) at the FT joint and load signals from the femoral campaniform sensilla (fCS) are known to individually reinforce stance-phase motor output of the FT joint by promoting flexor and inhibiting extensor motoneuron activity. We quantitatively compared the time course of inactivation in extensor tibiae motoneurons in response to selective stimulation of fCS and fCO. Stimulation of either sensor generates extensor activity in a qualitatively similar manner but with a significantly different time course and frequency of occurrence. Inactivation of extensor motoneurons arising from fCS stimulation was more reliable but more than threefold slower compared with the extensor inactivation in response to flexion signals from the fCO. In contrast, simultaneous stimulation of both sense organs produced inactivation in motoneurons with a time course typical for fCO stimulation alone, but with a frequency of occurrence characteristic for fCS stimulation. This increase in probability of occurrence was also accompanied by a delayed reactivation of the extensor motoneurons. Our results indicate for the first time that load signals from the leg affect the processing of movement-related feedback in controlling motor output.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources