Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;72(9):5915-26.
doi: 10.1128/AEM.02453-05.

Integrated analysis of established and novel microbial and chemical methods for microbial source tracking

Affiliations

Integrated analysis of established and novel microbial and chemical methods for microbial source tracking

Anicet R Blanch et al. Appl Environ Microbiol. 2006 Sep.

Abstract

Several microbes and chemicals have been considered as potential tracers to identify fecal sources in the environment. However, to date, no one approach has been shown to accurately identify the origins of fecal pollution in aquatic environments. In this multilaboratory study, different microbial and chemical indicators were analyzed in order to distinguish human fecal sources from nonhuman fecal sources using wastewaters and slurries from diverse geographical areas within Europe. Twenty-six parameters, which were later combined to form derived variables for statistical analyses, were obtained by performing methods that were achievable in all the participant laboratories: enumeration of fecal coliform bacteria, enterococci, clostridia, somatic coliphages, F-specific RNA phages, bacteriophages infecting Bacteroides fragilis RYC2056 and Bacteroides thetaiotaomicron GA17, and total and sorbitol-fermenting bifidobacteria; genotyping of F-specific RNA phages; biochemical phenotyping of fecal coliform bacteria and enterococci using miniaturized tests; specific detection of Bifidobacterium adolescentis and Bifidobacterium dentium; and measurement of four fecal sterols. A number of potentially useful source indicators were detected (bacteriophages infecting B. thetaiotaomicron, certain genotypes of F-specific bacteriophages, sorbitol-fermenting bifidobacteria, 24-ethylcoprostanol, and epycoprostanol), although no one source identifier alone provided 100% correct classification of the fecal source. Subsequently, 38 variables (both single and derived) were defined from the measured microbial and chemical parameters in order to find the best subset of variables to develop predictive models using the lowest possible number of measured parameters. To this end, several statistical or machine learning methods were evaluated and provided two successful predictive models based on just two variables, giving 100% correct classification: the ratio of the densities of somatic coliphages and phages infecting Bacteroides thetaiotaomicron to the density of somatic coliphages and the ratio of the densities of fecal coliform bacteria and phages infecting Bacteroides thetaiotaomicron to the density of fecal coliform bacteria. Other models with high rates of correct classification were developed, but in these cases, higher numbers of variables were required.

PubMed Disclaimer

Figures

FIG. 1.
FIG. 1.
Distribution of training observations according to the variables SOMCPH/BTHPH and SOMCPH. Values are standardized to zero mean and unit standard deviation.

References

    1. Ahmed, W., R. Neller, and M. Katouli. 2005. Host species-specific metabolic fingerprint database for enterococci and Escherichia coli and its application to identify sources of fecal contamination in surface waters. Appl. Environ. Microbiol. 71:4461-4468. - PMC - PubMed
    1. Atlas, R. M. 1984. Use of microbial diversity measurements to assess environmental stress, p. 540-545. In M. J. Klug and C. A. Reddy (ed.), Current perspectives in microbial ecology. American Society for Microbiology, Washington, D.C.
    1. Beelwilder, J., R. Niewenhuizen, A. H. Havelaar, and J. van Duin. 1996. An oligonucleotide hybridization assay for the identification and enumeration of F-specific RNA phages in surface waters. J. Appl. Bacteriol. 80:179-186. - PubMed
    1. Bianchi, M. A. G., and A. J. M. Bianchi. 1982. Statistical sampling of bacterial strains and its use in bacterial diversity measurement. Microb. Ecol. 8:61-69. - PubMed
    1. Blanch, A. R., J. L. Caplin, A. Iversen, I. Kühn, A. Manero, H. D. Taylor, and X. Vilanova. 2003. Comparison of enterococcal populations related to urban and hospital wastewater in various climatic and geographic European regions. J. Appl. Microbiol. 94:994-1002. - PubMed

Publication types

MeSH terms