Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep 7;443(7107):63-6.
doi: 10.1038/nature05118.

A class of non-precious metal composite catalysts for fuel cells

Affiliations

A class of non-precious metal composite catalysts for fuel cells

Rajesh Bashyam et al. Nature. .

Abstract

Fuel cells, as devices for direct conversion of the chemical energy of a fuel into electricity by electrochemical reactions, are among the key enabling technologies for the transition to a hydrogen-based economy. Of several different types of fuel cells under development today, polymer electrolyte fuel cells (PEFCs) have been recognized as a potential future power source for zero-emission vehicles. However, to become commercially viable, PEFCs have to overcome the barrier of high catalyst cost caused by the exclusive use of platinum and platinum-based catalysts in the fuel-cell electrodes. Here we demonstrate a new class of low-cost (non-precious metal)/(heteroatomic polymer) nanocomposite catalysts for the PEFC cathode, capable of combining high oxygen-reduction activity with good performance durability. Without any optimization, the cobalt-polypyrrole composite catalyst enables power densities of about 0.15 W cm(-2) in H2-O2 fuel cells and displays no signs of performance degradation for more than 100 hours. The results of this study show that heteroatomic polymers can be used not only to stabilize the non-precious metal in the acidic environment of the PEFC cathode but also to generate active sites for oxygen reduction reaction.

PubMed Disclaimer

LinkOut - more resources