Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Oct;17(5):527-33.
doi: 10.1097/01.mol.0000245258.25387.ec.

Multiple roles of Toll-like receptor signaling in atherosclerosis

Affiliations
Review

Multiple roles of Toll-like receptor signaling in atherosclerosis

Harry Björkbacka. Curr Opin Lipidol. 2006 Oct.

Abstract

Purpose of review: Toll-like receptors are key regulators of both innate and adaptive immune responses. This review outlines the recently emerged multiple roles of Toll-like receptor signaling in atherosclerosis.

Recent findings: Mice deficient in TLR4, TLR2 and MyD88 all have reduced atherosclerosis which establishes that Toll-like receptor-dependent pathways contribute to disease development. Although it is likely that total "infectious burden" contributes to atherosclerosis progression, endogenous ligands may also initiate and modulate Toll-like receptor signaling pathways. CD36, with established roles in recognition of endogenous ligands and atherosclerotic disease, facilitates TLR2 signaling and might therefore represent a bridge between endogenous lipid ligands and Toll-like receptor pathways. Furthermore, lipoprotein oxidation generates ligands that activate Toll-like receptor pathways. At the same time, Toll-like receptor activation may be inhibited by accumulating oxidized phospholipids, which could result in reduced dendritic cell maturation and impaired immunological priming.

Summary: Activation of Toll-like receptor signaling can promote atherosclerosis by multiple mechanisms, while some beneficial Toll-like receptor pathways may be inhibited by lipid accumulation. Due to their central role in the disease process, Toll-like receptor signaling pathways represent a target of immunomodulatory therapy with the goal of tipping the balance from excessive chronic inflammation towards resolution of inflammation, while not compromising host defense or atheroprotective immune functions.

PubMed Disclaimer

Publication types