Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Comparative Study
. 2006 May-Aug;23(3-4):567-71.
doi: 10.1017/S0952523806233303.

Color shifts induced by S-cone patterns are mediated by a neural representation driven by multiple cone types

Affiliations
Comparative Study

Color shifts induced by S-cone patterns are mediated by a neural representation driven by multiple cone types

Steven K Shevell et al. Vis Neurosci. 2006 May-Aug.

Abstract

This study investigated chromatic induction from inhomogeneous background patterns. Previous work showed that a background pattern detected by only S cones induced strong color shifts in a nearby test area (Monnier & Shevell, 2003). In that work, the S-cone patterns were composed with constant L- and M-cone stimulation over the entire background; in terms of L and M cones, therefore, the background was uniform. S-cone stimulation was varied over space to produce S-cone-isolated background patterns. These S-cone patterns, however, established spatial structure (the pattern) at both the receptoral level (S-cone stimulation) and the postreceptoral level (S/(L+M)). Here, these two levels of pattern representation were unconfounded to determine whether color shifts induced by S-cone patterns were due to spatial structure within an S-cone-specific neural pathway versus a pathway that combines responses from S cones and other cone types (e.g. S/(L+M)). The results showed that the induced color shifts were mediated by signals within a pathway that combines responses from multiple cone types. These results are consistent with a +s/-s spatially antagonistic neural receptive field, which is found in some neurons in V1 and V2.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources