Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct;1763(10):1040-50.
doi: 10.1016/j.bbamcr.2006.07.014. Epub 2006 Jul 31.

Toxicity of enzymatic oxidation products of spermine to human melanoma cells (M14): sensitization by heat and MDL 72527

Affiliations
Free article

Toxicity of enzymatic oxidation products of spermine to human melanoma cells (M14): sensitization by heat and MDL 72527

Enzo Agostinelli et al. Biochim Biophys Acta. 2006 Oct.
Free article

Abstract

In situ formation of cytotoxic metabolites by an enzyme-catalyzed reaction is a recent approach in cancer chemotherapy. We demonstrate that multidrug resistant human melanoma cells (M14 ADR) are more sensitive than the corresponding wild type cells (M14 WT) to hydrogen peroxide and aldehydes, the products of bovine serum amine oxidase (BSAO)-catalyzed oxidation of spermine. Hydrogen peroxide was mainly responsible for the loss of cell viability. With about 20%, the aldehydes formed from spermine contribute also to cytotoxicity. Elevation of temperature from 37 degrees C to 42 degrees C decreased survival of both cell lines by about one log unit. Pre-treatment with N1,N4-bis(2,3-butadienyl)-1,4-butanediamine (MDL 72527), a lysosomotropic compound, sensitized cells to toxic spermine metabolites. MDL 72527 (at 300 microM) produced in M14 cells numerous cytoplasmic vacuoles which, however, disappeared by 24 h, even in the presence of the drug. Mitochondrial damage, as observed by transmission electron microscopy, correlated better with the cytotoxic effects of the treatment than vacuole formation. Since the release of lysosomal enzymes causes oxidative stress and apoptosis, we suggest that the lysosomotropic effect of MDL 72527 is the major reason for its sensitizing effect.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources