Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec 8;281(49):37345-52.
doi: 10.1074/jbc.M605774200. Epub 2006 Sep 8.

GATA-1-mediated transcriptional repression yields persistent transcription factor IIB-chromatin complexes

Affiliations
Free article

GATA-1-mediated transcriptional repression yields persistent transcription factor IIB-chromatin complexes

Melissa L Martowicz et al. J Biol Chem. .
Free article

Abstract

The hematopoietic GATA factors GATA-1 and GATA-2, which have distinct and overlapping roles to regulate blood cell development, are reciprocally expressed during erythropoiesis. GATA-1 directly represses Gata2 transcription, and reduced GATA-2 synthesis promotes red blood cell development. Gata2 repression involves "GATA switches" in which GATA-1 displaces GATA-2 from Gata2 regulatory regions. We show that extragenic GATA switch sites occupied by GATA-2 associate with as much RNA polymerase II (Pol II) and basal transcription factors as present at the active Gata2 promoters. Pol II bound to GATA switch sites in the active locus was phosphorylated on serine 5 of the carboxyl-terminal domain, indicative of elongation competence. GATA-1-mediated displacement of GATA-2 from GATA switch sites reduced Pol II recruitment to all sites except the far upstream -77-kb region. Surprisingly, TFIIB occupancy persisted at most sites upon repression. These results indicate that GATA-2-bound extragenic regulatory elements recruit Pol II, GATA-1 binding expels Pol II, and despite the persistent TFIIB-chromatin complexes, Pol II recruitment is blocked.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources