Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Jul;17(7):1625-36.
doi: 10.1093/cercor/bhl073. Epub 2006 Sep 8.

Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting

Affiliations

Thalamic-prefrontal cortical-ventral striatal circuitry mediates dissociable components of strategy set shifting

Annie E Block et al. Cereb Cortex. 2007 Jul.

Abstract

The mediodorsal nuclei of thalamus (MD), prefrontal cortex (PFC), and nucleus accumbens core (NAc) form an interconnected network that may work together to subserve certain forms of behavioral flexibility. The present study investigated the functional interactions between these regions during performance of a cross-maze-based strategy set-shifting task. In Experiment 1, reversible bilateral inactivation of the MD via infusions of bupivacaine did not impair simple discrimination learning, but did disrupt shifting from response to visual cue discrimination strategy, and vice versa. This impairment was due to an increase in perseverative errors. In Experiment 2, asymmetrical disconnection inactivations of the MD on one side of the brain and PFC on the other also caused a perseverative deficit when rats were required to shift from a response to a visual cue discrimination strategy, as did disconnections between the PFC and the NAc. However, inactivation of the MD on one side of the brain and the NAc contralaterally resulted in a selective increase in never-reinforced errors, suggesting this pathway is important for eliminating inappropriate strategies during set shifting. These data indicate that set shifting is mediated by a distributed neural circuit, with separate neural pathways contributing dissociable components to this type of behavioral flexibility.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources