Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
- PMID: 16963705
- PMCID: PMC1581435
- DOI: 10.1101/gr.5290206
Doubling genome size without polyploidization: dynamics of retrotransposition-driven genomic expansions in Oryza australiensis, a wild relative of rice
Erratum in
- Genome Res. 2011 Jul;21(7):1201. Saniyal, Abhijit [corrected to Sanyal, Abhijit]
Abstract
Retrotransposons are the main components of eukaryotic genomes, representing up to 80% of some large plant genomes. These mobile elements transpose via a "copy and paste" mechanism, thus increasing their copy number while active. Their accumulation is now accepted as the main factor of genome size increase in higher eukaryotes, besides polyploidy. However, the dynamics of this process are poorly understood. In this study, we show that Oryza australiensis, a wild relative of the Asian cultivated rice O. sativa, has undergone recent bursts of three LTR-retrotransposon families. This genome has accumulated more than 90,000 retrotransposon copies during the last three million years, leading to a rapid twofold increase of its size. In addition, phenetic analyses of these retrotransposons clearly confirm that the genomic bursts occurred posterior to the radiation of the species. This provides direct evidence of retrotransposon-mediated variation of genome size within a plant genus.
Figures







Similar articles
-
Evolutionary history of Oryza sativa LTR retrotransposons: a preliminary survey of the rice genome sequences.BMC Genomics. 2004 Mar 2;5(1):18. doi: 10.1186/1471-2164-5-18. BMC Genomics. 2004. PMID: 15040813 Free PMC article.
-
LTR retrotransposons in rice (Oryza sativa, L.): recent burst amplifications followed by rapid DNA loss.BMC Genomics. 2007 Jul 6;8:218. doi: 10.1186/1471-2164-8-218. BMC Genomics. 2007. PMID: 17617907 Free PMC article.
-
Exceptional lability of a genomic complex in rice and its close relatives revealed by interspecific and intraspecific comparison and population analysis.BMC Genomics. 2011 Mar 8;12:142. doi: 10.1186/1471-2164-12-142. BMC Genomics. 2011. PMID: 21385395 Free PMC article.
-
LTR retrotransposons and flowering plant genome size: emergence of the increase/decrease model.Cytogenet Genome Res. 2005;110(1-4):91-107. doi: 10.1159/000084941. Cytogenet Genome Res. 2005. PMID: 16093661 Review.
-
Retrotransposons of rice: their regulation and use for genome analysis.Plant Mol Biol. 1997 Sep;35(1-2):231-40. Plant Mol Biol. 1997. PMID: 9291976 Review.
Cited by
-
Mapping and analysis of the LINE and SINE type of repetitive elements in rice.Bioinformation. 2011;7(6):276-9. doi: 10.6026/97320630007276. Epub 2011 Nov 20. Bioinformation. 2011. PMID: 22355220 Free PMC article.
-
A highly conserved, small LTR retrotransposon that preferentially targets genes in grass genomes.PLoS One. 2012;7(2):e32010. doi: 10.1371/journal.pone.0032010. Epub 2012 Feb 16. PLoS One. 2012. PMID: 22359654 Free PMC article.
-
Repetitive sequence analysis and karyotyping reveals centromere-associated DNA sequences in radish (Raphanus sativus L.).BMC Plant Biol. 2015 Apr 18;15:105. doi: 10.1186/s12870-015-0480-y. BMC Plant Biol. 2015. PMID: 25928652 Free PMC article.
-
Editorial: Mobile Elements and Plant Genome Evolution, Comparative Analyzes and Computational Tools.Front Plant Sci. 2021 Sep 24;12:735134. doi: 10.3389/fpls.2021.735134. eCollection 2021. Front Plant Sci. 2021. PMID: 34630484 Free PMC article. No abstract available.
-
The Dynamism of Transposon Methylation for Plant Development and Stress Adaptation.Int J Mol Sci. 2021 Oct 21;22(21):11387. doi: 10.3390/ijms222111387. Int J Mol Sci. 2021. PMID: 34768817 Free PMC article. Review.
References
-
- Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J., Gish W., Miller W., Myers E.W., Lipman D.J., Miller W., Myers E.W., Lipman D.J., Myers E.W., Lipman D.J., Lipman D.J. Basic local alignment search tool. J. Mol. Biol. 1990;215:403–410. - PubMed
-
- Ammiraju J.S., Luo M., Goicoechea J.L., Wang W., Kudrna D., Mueller C., Talag J., Kim H., Sisneros N.B., Blackmon B., Luo M., Goicoechea J.L., Wang W., Kudrna D., Mueller C., Talag J., Kim H., Sisneros N.B., Blackmon B., Goicoechea J.L., Wang W., Kudrna D., Mueller C., Talag J., Kim H., Sisneros N.B., Blackmon B., Wang W., Kudrna D., Mueller C., Talag J., Kim H., Sisneros N.B., Blackmon B., Kudrna D., Mueller C., Talag J., Kim H., Sisneros N.B., Blackmon B., Mueller C., Talag J., Kim H., Sisneros N.B., Blackmon B., Talag J., Kim H., Sisneros N.B., Blackmon B., Kim H., Sisneros N.B., Blackmon B., Sisneros N.B., Blackmon B., Blackmon B., et al. The Oryza bacterial artificial chromosome library resource: Construction and analysis of 12 deep-coverage large-insert BAC libraries that represent the 10 genome types of the genus Oryza . Genome Res. 2006;16:140–147. - PMC - PubMed
-
- Bartosch B., Stefanidis D., Myers R., Weiss R., Patience C., Takeuchi Y., Stefanidis D., Myers R., Weiss R., Patience C., Takeuchi Y., Myers R., Weiss R., Patience C., Takeuchi Y., Weiss R., Patience C., Takeuchi Y., Patience C., Takeuchi Y., Takeuchi Y. Evidence and consequence of porcine endogenous retrovirus recombination. J. Virol. 2004;78:13880–13890. - PMC - PubMed
-
- Brar D.S., Khush G.S., Khush G.S. Alien introgression in rice. Plant Mol. Biol. 1997;35:35–47. - PubMed
Publication types
MeSH terms
Substances
Associated data
- Actions
- Actions
- Actions
LinkOut - more resources
Full Text Sources
Other Literature Sources