Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution
- PMID: 16963708
- PMCID: PMC1581436
- DOI: 10.1101/gr.5410606
Large-scale intron conservation and order-of-magnitude variation in intron loss/gain rates in apicomplexan evolution
Abstract
The age of modern introns and the evolutionary forces controlling intron loss and gain remain matters of much debate. In the case of the apicomplexan malaria parasite Plasmodium falciparum, previous studies have shown that while the positions of two thirds of P. falciparum introns are not shared with surveyed non-apicomplexans (leaving open the possibility that they were relatively recently gained), 99.1% are shared with Plasmodium yoelii, which diverged from P. falciparum at least 100 Mya. We show here that 60.6% of P. falciparum intron positions in conserved regions are shared with the distantly related apicomplexan Theileria parva, whereas only 18.2% of introns in the more intron-rich T. parva are shared with P. falciparum. Comparison of 3305 pairs of orthologous genes between T. parva and Theileria annulata showed that 7089/7111 (99.7%) introns in conserved regions are shared between species. These levels of conservation imply significant differences in rates of intron loss and gain through apicomplexan history. Because transposable elements (TEs) and/or (often TE-encoded) reverse transcriptase are implicated in models of intron loss and gain, the observed low rates of intron loss and gain in recent Plasmodium and Theileria evolution are consistent with the lack of known TE in those groups. We suggest that intron loss/gain in some eukaryotic lineages may be concentrated in relatively short episodes coincident with occasional TE invasions.
Figures


Similar articles
-
Very little intron loss/gain in Plasmodium: intron loss/gain mutation rates and intron number.Genome Res. 2006 Jun;16(6):750-6. doi: 10.1101/gr.4845406. Epub 2006 May 15. Genome Res. 2006. PMID: 16702411 Free PMC article.
-
Widespread intron loss suggests retrotransposon activity in ancient apicomplexans.Mol Biol Evol. 2007 Sep;24(9):1926-33. doi: 10.1093/molbev/msm102. Epub 2007 May 23. Mol Biol Evol. 2007. PMID: 17522085
-
Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites.Mol Biol Evol. 2004 Jul;21(7):1422-7. doi: 10.1093/molbev/msh143. Epub 2004 Apr 14. Mol Biol Evol. 2004. PMID: 15084679
-
Analysis of evolution of exon-intron structure of eukaryotic genes.Brief Bioinform. 2005 Jun;6(2):118-34. doi: 10.1093/bib/6.2.118. Brief Bioinform. 2005. PMID: 15975222 Review.
-
Intron-rich ancestors.Trends Genet. 2006 Sep;22(9):468-71. doi: 10.1016/j.tig.2006.07.002. Epub 2006 Jul 20. Trends Genet. 2006. PMID: 16857287 Review.
Cited by
-
Recombination of chl-fus gene (Plastid Origin) downstream of hop: a locus of chromosomal instability.BMC Genomics. 2015 Aug 4;16(1):573. doi: 10.1186/s12864-015-1780-1. BMC Genomics. 2015. PMID: 26238241 Free PMC article.
-
Contrasting 5' and 3' evolutionary histories and frequent evolutionary convergence in Meis/hth gene structures.Genome Biol Evol. 2011;3:551-64. doi: 10.1093/gbe/evr056. Epub 2011 Jun 16. Genome Biol Evol. 2011. PMID: 21680890 Free PMC article.
-
Evidence against the energetic cost hypothesis for the short introns in highly expressed genes.BMC Evol Biol. 2008 May 20;8:154. doi: 10.1186/1471-2148-8-154. BMC Evol Biol. 2008. PMID: 18492248 Free PMC article.
-
The Cryptosporidium parvum ApiAP2 gene family: insights into the evolution of apicomplexan AP2 regulatory systems.Nucleic Acids Res. 2014 Jul;42(13):8271-84. doi: 10.1093/nar/gku500. Epub 2014 Jun 23. Nucleic Acids Res. 2014. PMID: 24957599 Free PMC article.
-
Evaluation of models of the mechanisms underlying intron loss and gain in Aspergillus fungi.J Mol Evol. 2010 Dec;71(5-6):364-73. doi: 10.1007/s00239-010-9391-6. Epub 2010 Sep 23. J Mol Evol. 2010. PMID: 20862581
References
-
- Abrahamsen M.S., Templeton T.J., Enomoto S., Abrahante J.E., Zhu G., Lancto C.A., Deng M., Liu C., Widmer G., Tzipori S., Templeton T.J., Enomoto S., Abrahante J.E., Zhu G., Lancto C.A., Deng M., Liu C., Widmer G., Tzipori S., Enomoto S., Abrahante J.E., Zhu G., Lancto C.A., Deng M., Liu C., Widmer G., Tzipori S., Abrahante J.E., Zhu G., Lancto C.A., Deng M., Liu C., Widmer G., Tzipori S., Zhu G., Lancto C.A., Deng M., Liu C., Widmer G., Tzipori S., Lancto C.A., Deng M., Liu C., Widmer G., Tzipori S., Deng M., Liu C., Widmer G., Tzipori S., Liu C., Widmer G., Tzipori S., Widmer G., Tzipori S., Tzipori S., et al. Complete genome sequence of the apicomplexan. Cryptosporidium parvum. Science. 2004;304:441–445. - PubMed
-
- Blumenstiel J.P., Hartl D.L., Lozovsky E.R., Hartl D.L., Lozovsky E.R., Lozovsky E.R. Patterns of insertion and deletion in constrasting chromatin domains. Mol. Biol. Evol. 2002;19:2211–2225. - PubMed
-
- Boyd M.F. Historical review. In: Boyd M.F., editor. Malariology. Saunders; Philadelphia: 1949. pp. 3–25.
-
- Castillo-Davis C.I., Bedford T.B., Hartl D.L., Bedford T.B., Hartl D.L., Hartl D.L. Accelerated rates of intron gain/loss and protein evolution in duplicate genes in human and mouse malaria parasites. Mol. Biol. Evol. 2004;21:1422–1427. - PubMed
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources