Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Jul-Aug;11(4):041102.
doi: 10.1117/1.2335429.

Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry

Affiliations
Free article
Review

Review of tissue simulating phantoms for optical spectroscopy, imaging and dosimetry

Brian W Pogue et al. J Biomed Opt. 2006 Jul-Aug.
Free article

Abstract

Optical spectroscopy, imaging, and therapy tissue phantoms must have the scattering and absorption properties that are characteristic of human tissues, and over the past few decades, many useful models have been created. In this work, an overview of their composition and properties is outlined, by separating matrix, scattering, and absorbing materials, and discussing the benefits and weaknesses in each category. Matrix materials typically are water, gelatin, agar, polyester or epoxy and polyurethane resin, room-temperature vulcanizing (RTV) silicone, or polyvinyl alcohol gels. The water and hydrogel materials provide a soft medium that is biologically and biochemically compatible with addition of organic molecules, and are optimal for scientific laboratory studies. Polyester, polyurethane, and silicone phantoms are essentially permanent matrix compositions that are suitable for routine calibration and testing of established systems. The most common three choices for scatters have been: (1.) lipid based emulsions, (2.) titanium or aluminum oxide powders, and (3.) polymer microspheres. The choice of absorbers varies widely from hemoglobin and cells for biological simulation, to molecular dyes and ink as less biological but more stable absorbers. This review is an attempt to indicate which sets of phantoms are optimal for specific applications, and provide links to studies that characterize main phantom material properties and recipes.

PubMed Disclaimer

Similar articles

Cited by

Publication types