The role of the cellular prion protein in the immune system
- PMID: 16968391
- PMCID: PMC1809729
- DOI: 10.1111/j.1365-2249.2006.03194.x
The role of the cellular prion protein in the immune system
Abstract
Prion protein (PrP) plays a key role in the pathogenesis of prion diseases. However, the normal function of the protein remains unclear. The cellular isoform (PrP(C)) is expressed widely in the immune system, in haematopoietic stem cells and mature lymphoid and myeloid compartments in addition to cells of the central nervous system. It is up-regulated in T cell activation and may be expressed at higher levels by specialized classes of lymphocyte. Furthermore, antibody cross-linking of surface PrP modulates T cell activation and leads to rearrangements of lipid raft constituents and increased phosphorylation of signalling proteins. These findings appear to indicate an important but, as yet, ill-defined role in T cell function. Although PrP(-/-) mice have been reported to have only minor alterations in immune function, recent work has suggested that PrP is required for self-renewal of haematopoietic stem cells. Here, we consider the evidence for a distinctive role for PrP(C) in the immune system and what the effects of anti-prion therapeutics may be on immune function.
References
-
- Collinge J. Prion diseases of humans and animals: their causes and molecular basis. Annu Rev Neurosci. 2001;24:519–50. - PubMed
-
- Hill AF, Desbruslais M, Joiner S, Sidle KCL, Gowland I, Collinge J. The same prion strain causes vCJD and BSE. Nature. 1997;389:448–50. - PubMed
-
- Bruce ME, Will RG, Ironside JW, et al. Transmissions to mice indicate that ‘new variant’ CJD is caused by the BSE agent. Nature. 1997;389:498–501. - PubMed
-
- Collinge J, Sidle KCL, Meads J, Ironside J, Hill AF. Molecular analysis of prion strain variation and the aetiology of ‘new variant’ CJD. Nature. 1996;383:685–90. - PubMed
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Research Materials