Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Sep;5(17):2029-35.
doi: 10.4161/cc.5.17.3312. Epub 2006 Sep 1.

Selective induction of necrotic cell death in cancer cells by beta-lapachone through activation of DNA damage response pathway

Affiliations
Free article

Selective induction of necrotic cell death in cancer cells by beta-lapachone through activation of DNA damage response pathway

Xiangao Sun et al. Cell Cycle. 2006 Sep.
Free article

Abstract

Most efforts thus far have been devoted to develop apoptosis inducers for cancer treatment. However, apoptotic pathway deficiencies are a hallmark of cancer cells. We propose that one way to bypass defective apoptotic pathways in cancer cells is to induce necrotic cell death. Here we show that selective induction of necrotic cell death can be achieved by activation of the DNA damage response pathways. While beta-lapachone induces apoptosis through E2F1 checkpoint pathways, necrotic cell death can be selectively induced by beta-lapachone in a variety of cancer cells. We found that beta-lapachone, unlike DNA damaging chemotherapeutic agents, transiently activates PARP1, a main regulator of the DNA damage response pathway, both in vitro and in vivo. This occurs within minutes of exposure to beta-lapachone, resulting in selective necrotic cell death. Inhibition of PAR blocked beta-lapachone-induced necrosis. Furthermore, necrotic cell death induced by beta-lapachone was significantly reduced in PARP1 knockout cell lines. Our data suggest that selective necrotic cell death can be induced through activation of DNA damage response pathways, supporting the idea of selective necrotic cell death as a therapeutic strategy to eliminate cancer cells.

PubMed Disclaimer

LinkOut - more resources