Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;11(12):1116-25.
doi: 10.1038/sj.mp.4001893. Epub 2006 Sep 12.

Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes

Affiliations

Valproate protects dopaminergic neurons in midbrain neuron/glia cultures by stimulating the release of neurotrophic factors from astrocytes

P-S Chen et al. Mol Psychiatry. 2006 Dec.

Abstract

Valproate (VPA), one of the mood stabilizers and antiepileptic drugs, was recently found to inhibit histone deacetylases (HDAC). Increasing reports demonstrate that VPA has neurotrophic effects in diverse cell types including midbrain dopaminergic (DA) neurons. However, the origin and nature of the mediator of the neurotrophic effects are unclear. We have previously demonstrated that VPA prolongs the survival of midbrain DA neurons in lipopolysaccharide (LPS)-treated neuron-glia cultures through the inhibition of the release of pro-inflammatory factors from microglia. In this study, we report that VPA upregulates the expression of neurotrophic factors, including glial cell line-derived neurotrophic factor (GDNF) and brain-derived neurotrophic factor (BDNF) from astrocytes and these effects may play a major role in mediating VPA-induced neurotrophic effects on DA neurons. Moreover, VPA pretreatment protects midbrain DA neurons from LPS or 1-methyl-4-phenylpyridinium (MPP+)-induced neurotoxicity. Our study identifies astrocyte as a novel target for VPA to induce neurotrophic and neuroprotective actions in rat midbrain and shows a potential new role of cellular interactions between DA neurons and astrocytes. The neurotrophic and neuroprotective effects of VPA also suggest a utility of this drug for treating neurodegenerative disorders including Parkinson's disease. Moreover, the neurotrophic effects of VPA may contribute to the therapeutic action of this drug in treating bipolar mood disorder that involves a loss of neurons and glia in discrete brain areas.

PubMed Disclaimer

MeSH terms

Substances

LinkOut - more resources