Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 May:424:283-300.
doi: 10.1113/jphysiol.1990.sp018067.

Active ion transport pathways in the bovine retinal pigment epithelium

Affiliations

Active ion transport pathways in the bovine retinal pigment epithelium

S S Miller et al. J Physiol. 1990 May.

Abstract

1. Radioactive tracer flux measurements demonstrate that active ion transport across the isolated bovine retinal pigment epithelium (RPE)-choroid preparation can be maintained for hours after the eye is enucleated and the tissue removed from the eye. 2. It has been shown that 86Rb tracer fluxes can be used to monitor potassium (K+) transport across bull-frog RPE. In bovine RPE, net 86Rb (K+) absorption is zero. Apical barium (Ba2+) elevated active K+ absorption from zero to approximately 0.3 mu equiv cm-2 h-1. This Ba2(+)-induced increase in active K+ absorption was inhibited either by ouabain or bumetanide in the apical bath. 3. In control Ringer solution, buffered with bicarbonate and CO2, the RPE-choroid actively absorbs chloride (Cl-) at a rate of approximately 0.5 mu equiv cm-2 h-1. In contrast, sodium (Na+) is secreted at a rate of approximately 0.5 mu equiv cm-2 h-1. Chloride absorption was inhibited by apical bumetanide, and Na+ secretion was inhibited by apical ouabain. These drugs were only effective when placed in the solution bathing the apical or retinal side of the tissue. 4. Net Cl- absorption requires an exit mechanism at the basolateral membrane. DIDS (4,4'-diisothiocyanostilbene-2,2'-disulphonic acid) in the basal bath completely inhibited net Cl- absorption in bicarbonate-free Ringer solution. 5. These experiments show that the chloride transport pathway contains at least two components: (1) a bumetanide-sensitive uptake mechanism at the apical membrane; and (2) an efflux mechanism at the basolateral membrane that is blocked by DIDS. 6. Three apical membrane mechanisms were identified that could help modulate [K+]o in the subretinal or extracellular space that separates the distal retina and the RPE apical membrane. They are: (1) an ouabain-sensitive Na(+)-K+ pump; (2) a bumetanide-sensitive mechanism, the putative Na(+)-K(+)-Cl- co-transporter; (3) a barium-sensitive K+ channel that recycles, to the apical bath, most or all of the potassium that is actively taken up by the Na(+)-K+ pump and the co-transporter. 7. These data suggest that light-induced alterations in subretinal potassium that occur in vivo can activate the chloride transport pathway and help modulate RPE intracellular Cl- during transitions between the light and dark.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Exp Eye Res. 1977 Sep;25(3):235-48 - PubMed
    1. J Gen Physiol. 1977 Oct;70(4):405-25 - PubMed
    1. Invest Ophthalmol Vis Sci. 1977 Aug;16(8):771-4 - PubMed
    1. J Neurophysiol. 1976 Sep;39(5):1117-33 - PubMed
    1. J Gen Physiol. 1966 May;49(5):913-24 - PubMed

Publication types

MeSH terms