The dynamic energy landscape of dihydrofolate reductase catalysis
- PMID: 16973882
- DOI: 10.1126/science.1130258
The dynamic energy landscape of dihydrofolate reductase catalysis
Abstract
We used nuclear magnetic resonance relaxation dispersion to characterize higher energy conformational substates of Escherichia coli dihydrofolate reductase. Each intermediate in the catalytic cycle samples low-lying excited states whose conformations resemble the ground-state structures of preceding and following intermediates. Substrate and cofactor exchange occurs through these excited substates. The maximum hydride transfer and steady-state turnover rates are governed by the dynamics of transitions between ground and excited states of the intermediates. Thus, the modulation of the energy landscape by the bound ligands funnels the enzyme through its reaction cycle along a preferred kinetic path.
Comment in
-
Structural biology. Dynamic visions of enzymatic reactions.Science. 2006 Sep 15;313(5793):1586-7. doi: 10.1126/science.1132851. Science. 2006. PMID: 16973868 No abstract available.
Similar articles
-
Millisecond timescale fluctuations in dihydrofolate reductase are exquisitely sensitive to the bound ligands.Proc Natl Acad Sci U S A. 2010 Jan 26;107(4):1373-8. doi: 10.1073/pnas.0914163107. Epub 2010 Jan 8. Proc Natl Acad Sci U S A. 2010. PMID: 20080605 Free PMC article.
-
Defining the role of active-site loop fluctuations in dihydrofolate reductase catalysis.Proc Natl Acad Sci U S A. 2005 Apr 5;102(14):5032-7. doi: 10.1073/pnas.0500699102. Epub 2005 Mar 28. Proc Natl Acad Sci U S A. 2005. PMID: 15795383 Free PMC article.
-
Conformational changes in the active site loops of dihydrofolate reductase during the catalytic cycle.Biochemistry. 2004 Dec 28;43(51):16046-55. doi: 10.1021/bi048119y. Biochemistry. 2004. PMID: 15609999
-
Searching sequence space: two different approaches to dihydrofolate reductase catalysis.Chembiochem. 2005 Apr;6(4):590-600. doi: 10.1002/cbic.200400237. Chembiochem. 2005. PMID: 15812782 Review.
-
Conformational Sub-states and Populations in Enzyme Catalysis.Methods Enzymol. 2016;578:273-97. doi: 10.1016/bs.mie.2016.05.023. Epub 2016 Jul 9. Methods Enzymol. 2016. PMID: 27497171 Free PMC article. Review.
Cited by
-
Dynamic regulation of Zn(II) sequestration by calgranulin C.Protein Sci. 2022 Sep;31(9):e4403. doi: 10.1002/pro.4403. Protein Sci. 2022. PMID: 36367084 Free PMC article.
-
Transient kinetic studies of the antiviral Drosophila Dicer-2 reveal roles of ATP in self-nonself discrimination.Elife. 2021 Mar 31;10:e65810. doi: 10.7554/eLife.65810. Elife. 2021. PMID: 33787495 Free PMC article.
-
Biophysical and computational methods to analyze amino acid interaction networks in proteins.Comput Struct Biotechnol J. 2016 Jun 22;14:245-51. doi: 10.1016/j.csbj.2016.06.002. eCollection 2016. Comput Struct Biotechnol J. 2016. PMID: 27441044 Free PMC article. Review.
-
Mapping the intrinsically disordered properties of the flexible loop domain of Bcl-2: a molecular dynamics simulation study.J Mol Model. 2016 Apr;22(4):98. doi: 10.1007/s00894-016-2940-1. Epub 2016 Apr 1. J Mol Model. 2016. PMID: 27037822
-
Conformational equilibrium of N-myristoylated cAMP-dependent protein kinase A by molecular dynamics simulations.Biochemistry. 2012 Dec 21;51(51):10186-96. doi: 10.1021/bi301279f. Epub 2012 Dec 12. Biochemistry. 2012. PMID: 23205665 Free PMC article.
Publication types
MeSH terms
Substances
Grants and funding
LinkOut - more resources
Full Text Sources
Other Literature Sources
Molecular Biology Databases