Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Oct 13;99(8):884-90.
doi: 10.1161/01.RES.0000245191.34690.66. Epub 2006 Sep 14.

Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C

Affiliations
Free article

Protein kinase A-mediated acceleration of the stretch activation response in murine skinned myocardium is eliminated by ablation of cMyBP-C

Julian E Stelzer et al. Circ Res. .
Free article

Abstract

Beta-adrenergic agonists induce protein kinase A (PKA) phosphorylation of the cardiac myofilament proteins myosin binding protein C (cMyBP-C) and troponin I (cTnI), resulting in enhanced systolic function, but the relative contributions of cMyBP-C and cTnI to augmented contractility are not known. To investigate possible roles of cMyBP-C in this response, we examined the effects of PKA treatment on the rate of force redevelopment and the stretch activation response in skinned ventricular myocardium from both wild-type (WT) and cMyBP-C null (cMyBP-C(-/-)) myocardium. In WT myocardium, PKA treatment accelerated the rate of force redevelopment and the stretch activation response, resulting in a shorter time to the peak of delayed force development when the muscle was stretched to a new isometric length. Ablation of cMyBP-C accelerated the rate of force redevelopment and stretch activation response to a degree similar to that observed in PKA treatment of WT myocardium; however, PKA treatment had no effect on the rate of force development and the stretch activation response in null myocardium. These results indicate that ablation of cMyBP-C and PKA treatment of WT myocardium have similar effects on cross-bridge cycling kinetics and suggest that PKA phosphorylation of cMyBP-C accelerates the rate of force generation and thereby contributes to the accelerated twitch kinetics observed in living myocardium during beta-adrenergic stimulation.

PubMed Disclaimer

Comment in

Similar articles

Cited by

Publication types

Substances

LinkOut - more resources