Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep 5;265(25):15275-9.

Discordant expression of heat shock protein mRNAs in tissues of heat-stressed rats

Affiliations
  • PMID: 1697588
Free article

Discordant expression of heat shock protein mRNAs in tissues of heat-stressed rats

M J Blake et al. J Biol Chem. .
Free article

Abstract

Although the induction of heat shock proteins (HSP) has been studied extensively in cultured cells, comparatively few studies have examined their expression in vivo. In this report, mRNA expression of two HSP families, HSP70 and HSP27, was investigated in brain, liver, lung, and skin of rats exposed to elevated ambient temperatures. The time course and relative magnitude of the heat-induced expression for these two HSP differed between tissues of the same animal. Even within the same tissue, HSP70 and HSP27 displayed differential kinetics of induction. In brain, lung, and skin, induction of HSP70 was dependent on the duration and temperature of the heat stress. This induction was transient with maximal HSP70 expression occurring at 1 h and returning to baseline 3 h after removal of the animals from heat stress. In liver, HSP70 expression did not show a direct relationship with temperature conditions and maximal induction did not occur until 6 h after heat stress. Heat-induced HSP27 expression was dependent on time and temperature of exposure in lung and skin but not in brain and liver. These findings demonstrate that the heat shock response in vivo lacks much of the coordinate control of expression characteristic of cultured cell populations and suggest that mechanisms controlling this cellular stress response are influenced by physiologic factors that cannot be studied in vitro.

PubMed Disclaimer

Publication types

LinkOut - more resources