Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;59(2):436-51.
doi: 10.1111/j.1574-6941.2006.00200.x. Epub 2006 Sep 18.

Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient

Affiliations
Free article

Size and structure of bacterial, fungal and nematode communities along an Antarctic environmental gradient

Etienne Yergeau et al. FEMS Microbiol Ecol. 2007 Feb.
Free article

Abstract

The unusually harsh environmental conditions of terrestrial Antarctic habitats result in ecosystems with simplified trophic structures, where microbial processes are especially dominant as drivers of soil-borne nutrient cycling. We examined soil-borne Antarctic communities (bacteria, fungi and nematodes) at five locations along a southern latitudinal gradient from the Falkland Islands (51 degrees S) to the base of the Antarctic Peninsula (72 degrees S), and compared principally vegetated vs. fell-field locations at three of these sites. Results of molecular (denaturing gradient gel electrophoresis, real-time PCR), biochemical (ergosterol, phospholipid fatty acids) and traditional microbiological (temperature- and medium-related CFU) analyses were related to key soil and environmental properties. Microbial abundance generally showed a significant positive relationship with vegetation and vegetation-associated soil factors (e.g. water content, organic C, total N). Microbial community structure was mainly related to latitude or location and latitude-dependent factors (e.g. mean temperature, NO3, pH). Furthermore, strong interactions between vegetation cover and location were observed, with the effects of vegetation cover being most pronounced in more extreme sites. These results provide insight into the main drivers of microbial community size and structure across a range of terrestrial Antarctic and sub-Antarctic habitats, potentially serving as a useful baseline to study the impact of predicted global warming on these unique and pristine ecosystems.

PubMed Disclaimer

Publication types