Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Aug;23(5):523-38.
doi: 10.1080/02652040600775525.

Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use

Affiliations

Preparation, characterization, photocytotoxicity assay of PLGA nanoparticles containing zinc (II) phthalocyanine for photodynamic therapy use

Eduardo Ricci-Júnior et al. J Microencapsul. 2006 Aug.

Abstract

Nanoparticles containing Zinc (II) Phthalocyanine (ZnPc) were prepared by a spontaneous emulsification diffusion method utilizing poly-(D,L lactic-co-glycolic acid) (PLGA), characterized and available in cellular culture. The process yield and encapsulation efficiency were 60% and 80%, respectively. The nanoparticles have a mean diameter of 200 nm, a narrow size distribution with polydispersive index of 0.15, smooth surface and spherical shape. ZnPc loaded nanoparticles maintain their photophysical behaviour after the encapsulation process. Photosensitizer released from nanoparticles was sustained with a burst effect of 10% for 3 days. The photocytotoxicity was evaluated on P388-D1 cells. They were incubated with ZnPc loaded Np by 6 h and exposed to light (675 nm) for 120 s, and light dose of 30 J cm-2. After 24 h of incubation, the cellular viability was determined, obtaining 60% of cellular death. All the physical-chemical and photobiological measurements performed allowed one conclude that ZnPc loaded PLGA nanoparticles are a promising drug delivery system for PDT.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources