Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Clinical Trial
. 2006 Oct;34(10):1413-9.
doi: 10.1016/j.exphem.2006.06.007.

In vitro analysis of multipotent mesenchymal stromal cells as potential cellular therapeutics in neurometabolic diseases in pediatric patients

Affiliations
Free article
Clinical Trial

In vitro analysis of multipotent mesenchymal stromal cells as potential cellular therapeutics in neurometabolic diseases in pediatric patients

Ingo Müller et al. Exp Hematol. 2006 Oct.
Free article

Abstract

Multipotent mesenchymal stromal cells (MSCs) play an important role in stromal support for hematopoietic stem cells, immune modulation, and tissue regeneration. We investigated their potential as cellular therapeutic tools in neurometabolic diseases as a growing number of affected children undergo to bone marrow transplantation. MSCs were isolated from bone marrow aspirates and expanded ex vivo under various culture conditions. MSCs under optimal good medical practice (GMP)-conform culture conditions showed the typical morphology, immunophenotype, and plasticity. Biochemically, the activities of beta-hexosaminidase A, total beta-hexosaminidase, arylsulfatase A (ASA), and beta-galactosidase measured in MSCs were comparable to those in fibroblasts of healthy donors. These four enzymes were interesting for their expression in MSCs, as each of them is defective, respectively, in well-known neurometabolic diseases. We found that MSCs released significant amounts of ASA into the media. In coculture experiments, fibroblasts from patients with metachromatic leukodystrophy, who are deficient for ASA, took up a substantial amount of ASA that was released into the media from MSCs. Mannose-6-phosphate (M6P) inhibited this uptake, which was in accordance with the M6P receptor-mediated uptake of lysosomal enzymes. Taken together, we show that MSCs produce appreciable amounts of lysosomal enzyme activities, making these cells first-choice candidates for providing metabolic correction when given to enzyme-deficient patients. With the example of ASA, it was also shown that an enzyme secreted from MSCs is taken up by enzyme-deficient patient fibroblasts. Given the plasticity of MSCs, these cells represent an interesting add-on option for cellular therapy in children undergoing bone marrow transplantation for lysosomal storage diseases and other neurometabolic diseases.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources