Induction of autoimmunity by expansion of autoreactive CD4+CD62Llow cells in vivo
- PMID: 16982873
- DOI: 10.4049/jimmunol.177.7.4384
Induction of autoimmunity by expansion of autoreactive CD4+CD62Llow cells in vivo
Abstract
The prerequisites of peripheral activation of self-specific CD4(+) T cells that determine the development of autoimmunity are incompletely understood. SJL mice immunized with myelin proteolipid protein (PLP) 139-151 developed experimental autoimmune encephalomyelitis (EAE) when pertussis toxin (PT) was injected at the time of immunization but not when injected 6 days later, indicating that PT-induced alterations of the peripheral immune response lead to the development of autoimmunity. Further analysis using IA(s)/PLP(139-151) tetramers revealed that PT did not change effector T cell activation or regulatory T cell numbers but enhanced IFN-gamma production by self-specific CD4(+) T cells. In addition, PT promoted the generation of CD4(+)CD62L(low) effector T cells in vivo. Upon adoptive transfer, these cells were more potent than CD4(+)CD62L(high) cells in inducing autoimmunity in recipient mice. The generation of this population was paralleled by higher expression of the costimulatory molecules CD80, CD86, and B7-DC, but not B7-RP, PD-1, and B7-H1 on CD11c(+)CD4(+) dendritic cells whereas CD11c(+)CD8alpha(+) dendritic cells were not altered. Collectively, these data demonstrate the induction of autoimmunity by specific in vivo expansion of CD4(+)CD62L(low) cells and indicate that CD4(+)CD62L(low) effector T cells and CD11c(+)CD4(+) dendritic cells may be attractive targets for immune interventions to treat autoimmune diseases.
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Research Materials
