Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1990 Sep;87(18):7334-8.
doi: 10.1073/pnas.87.18.7334.

Fatty acids inhibit apical membrane chloride channels in airway epithelia

Affiliations

Fatty acids inhibit apical membrane chloride channels in airway epithelia

M P Anderson et al. Proc Natl Acad Sci U S A. 1990 Sep.

Abstract

Apical membrane Cl- channels control the rate of transepithelial Cl- secretion in airway epithelia. cAMP-dependent protein kinase and protein kinase C regulate Cl- channels by phosphorylation; in cystic fibrosis cells, phosphorylation-dependent activation of Cl- channels is defective. Another important signaling system involves arachidonic acid, which is released from cell membranes during receptor-mediated stimulation. Here we report that arachidonic acid reversibly inhibited apical membrane Cl- channels in cell-free patches of membrane. Arachidonic acid itself inhibited the channel and not a cyclooxygenase or lipoxygenase metabolite because (i) inhibitors of these enzymes did not block the response, (ii) fatty acids that are not substrates for the enzymes had the same effect as arachidonic acid, and (iii) metabolites of arachidonic acid did not inhibit the channel. Inhibition occurred only when fatty acids were added to the cytosolic surface of the membrane patch. Unsaturated fatty acids were more potent than saturated fatty acids. Arachidonic acid inhibited Cl- channels from both normal and cystic fibrosis cells. These results suggest that fatty acids directly inhibit apical membrane Cl- channels in airway epithelial cells.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Nature. 1989 Feb 9;337(6207):555-7 - PubMed
    1. Biochemistry. 1971 Aug 17;10(17):3229-32 - PubMed
    1. J Biol Chem. 1986 Sep 25;261(27):12841-9 - PubMed
    1. Annu Rev Biochem. 1986;55:69-102 - PubMed
    1. Pflugers Arch. 1989 Jan;413(3):273-9 - PubMed

Publication types

MeSH terms