Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006;11(4):536-56.
doi: 10.2478/s11658-006-0044-0. Epub 2006 Sep 14.

Plant dehydrins--tissue location, structure and function

Affiliations
Review

Plant dehydrins--tissue location, structure and function

Tadeusz Rorat. Cell Mol Biol Lett. 2006.

Erratum in

Abstract

Dehydrins (DHNs) are part of a large group of highly hydrophilic proteins known as LEA (Late Embryogenesis Abundant). They were originally identified as group II of the LEA proteins. The distinctive feature of all DHNs is a conserved, lysine-rich 15-amino acid domain, EKKGIMDKIKEKLPG, named the K-segment. It is usually present near the C-terminus. Other typical dehydrin features are: a track of Ser residues (the S-segment); a consensus motif, T/VDEYGNP (the Y-segment), located near the N-terminus; and less conserved regions, usually rich in polar amino acids (the Phi-segments). They do not display a well-defined secondary structure. The number and order of the Y-, S-and K-segments define different DHN sub-classes: Y(n)SK(n), Y(n)Kn, SK(n), K(n) and K(n)S. Dehydrins are distributed in a wide range of organisms including the higher plants, algae, yeast and cyanobacteria. They accumulate late in embryogenesis, and in nearly all the vegetative tissues during normal growth conditions and in response to stress leading to cellular dehydration (e.g. drought, low temperature and salinity). DHNs are localized in different cell compartments, such as the cytosol, nucleus, mitochondria, vacuole, and the vicinity of the plasma membrane; however, they are primarily localized to the cytoplasm and nucleus. The precise function of dehydrins has not been established yet, but in vitro experiments revealed that some DHNs (YSK(n)-type) bind to lipid vesicles that contain acidic phospholipids, and others (K(n)S) were shown to bind metals and have the ability to scavenge hydroxyl radicals [Asghar, R. et al. Protoplasma 177 (1994) 87-94], protect lipid membranes against peroxidation or display cryoprotective activity towards freezing-sensitive enzymes. The SK(n)-and K-type seem to be directly involved in cold acclimation processes. The main question arising from the in vitro findings is whether each DHN structural type could possess a specific function and tissue distribution. Much recent in vitro data clearly indicates that dehydrins belonging to different subclasses exhibit distinct functions.

PubMed Disclaimer

Similar articles

Cited by

References

    1. Ingram J., Bartels D. The molecular basis of dehydration tolerance in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 1996;47:377–403. doi: 10.1146/annurev.arplant.47.1.377. - DOI - PubMed
    1. Allagulova Ch.R., Gilamov F.R., Shakirova F.M., Vakhitov V.A. The plant dehydrins: structure and functions. Biochemistry (Moscow) 2003;68:945–951. doi: 10.1023/A:1026077825584. - DOI - PubMed
    1. Garay-Arroyo A., Colmenoro-Florest J.M., Garciarrubio A., Covarrubias A.A. Highly hydrophilic proteins in prokaryotes and eucaryotes are common during conditions of water deficit. J. Biol. Chem. 2000;275:5668–5674. doi: 10.1074/jbc.275.8.5668. - DOI - PubMed
    1. Dure L., Crouch M., Harada J., Ho T.-H.D., Mundy J., Quatrano R., Thomas T., Sung Z.R. Common amino acid sequence domains among the LEA proteins of higher plants. Plant Mol. Biol. 1989;12:475–486. doi: 10.1007/BF00036962. - DOI - PubMed
    1. Cuming A. C. LEA proteins. In: Shewry P. R., Casey R., editors. Seed Proteins. Dordrecht: Kluwer Academic Publishers; 1999. pp. 753–780.

MeSH terms