Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Feb;292(2):F769-79.
doi: 10.1152/ajprenal.00248.2006. Epub 2006 Sep 19.

Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice

Affiliations
Free article

Correlation between hyperphosphatemia and type II Na-Pi cotransporter activity in klotho mice

Hiroko Segawa et al. Am J Physiol Renal Physiol. 2007 Feb.
Free article

Abstract

Recent studies have demonstrated that klotho protein plays a role in calcium/phosphate homeostasis. The goal of the present study was to investigate the regulation of Na-P(i) cotransporters in klotho mutant (kl/kl) mice. The kl/kl mice displayed hyperphosphatemia, high plasma 1,25(OH)(2)D(3) levels, increased activity of the renal and intestinal sodium-dependent P(i) cotransporters, and increased levels of the type IIa, type IIb, and type IIc transporter proteins compared with wild-type mice. Interestingly, transcript levels of the type IIa/type IIc transporter mRNA abundance, but not transcripts levels of type IIb transporter mRNA, were markedly decreased in kl/kl mice compared with wild-type mice. Furthermore, plasma fibroblast growth factor 23 (FGF23) levels were 150-fold higher in kl/kl mice than in wild-type mice. Feeding of a low-P(i) diet induced the expression of klotho protein and decreased plasma FGF23 levels in kl/kl mice, whereas colchicine treatment experiments revealed evidence of abnormal membrane trafficking of the type IIa transporter in kl/kl mice. Finally, feeding of a low-P(i) diet resulted in increased type IIa Na-P(i) cotransporter protein in the apical membrane in the wild-type mice, but not in kl/kl mice. These results indicate that hyperphosphatemia in klotho mice is due to dysregulation of expression and trafficking of the renal type IIa/IIc transporters rather than to intestinal P(i) uptake.

PubMed Disclaimer

Publication types

LinkOut - more resources