Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2005 Sep;152(3):97-107.
doi: 10.1049/ip-syb:20045033.

Biochemical networks with uncertain parameters

Affiliations

Biochemical networks with uncertain parameters

W Liebermeister et al. Syst Biol (Stevenage). 2005 Sep.

Abstract

The modelling of biochemical networks becomes delicate if kinetic parameters are varying, uncertain or unknown. Facing this situation, we quantify uncertain knowledge or beliefs about parameters by probability distributions. We show how parameter distributions can be used to infer probabilistic statements about dynamic network properties, such as steady-state fluxes and concentrations, signal characteristics or control coefficients. The parameter distributions can also serve as priors in Bayesian statistical analysis. We propose a graphical scheme, the 'dependence graph', to bring out known dependencies between parameters, for instance, due to the equilibrium constants. If a parameter distribution is narrow, the resulting distribution of the variables can be computed by expanding them around a set of mean parameter values. We compute the distributions of concentrations, fluxes and probabilities for qualitative variables such as flux directions. The probabilistic framework allows the study of metabolic correlations, and it provides simple measures of variability and stochastic sensitivity. It also shows clearly how the variability of biological systems is related to the metabolic response coefficients.

PubMed Disclaimer

Publication types