Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Sep-Oct;8(9-10):1737-44.
doi: 10.1089/ars.2006.8.1737.

Mitochondrial oxidative stress, DNA damage, and heart failure

Affiliations
Review

Mitochondrial oxidative stress, DNA damage, and heart failure

Hiroyuki Tsutsui et al. Antioxid Redox Signal. 2006 Sep-Oct.

Abstract

Recent experimental and clinical studies have suggested that oxidative stress is enhanced in heart failure. The production of oxygen radicals is increased in the failing heart, whereas antioxidant enzyme activities are preserved as normal. Mitochondrial electron transport is an enzymatic source of oxygen radical generation and also a target of oxidant-induced damage. Chronic increases in oxygen radical production in the mitochondria can lead to a catastrophic cycle of mitochondrial DNA (mtDNA) damage as well as functional decline, further oxygen radical generation, and cellular injury. Reactive oxygen species induce myocyte hypertrophy, apoptosis, and interstitial fibrosis by activating matrix metalloproteinases. These cellular events play an important role in the development and progression of maladaptive cardiac remodeling and failure. Therefore, mitochondrial oxidative stress and mtDNA damage are good therapeutic targets. Overexpression of mitochondrial transcription factor A (TFAM) could ameliorate the decline in mtDNA copy number and preserve it at a normal level in failing hearts. Consistent with alterations in mtDNA, the decrease in oxidative capacities was also prevented. Therefore, the activation of TFAM expression could ameliorate the pathophysiologic processes seen in myocardial failure. Inhibition of mitochondrial oxidative stress and mtDNA damage could be novel and potentially very effective treatment strategies for heart failure.

PubMed Disclaimer

Publication types

MeSH terms

LinkOut - more resources