Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution
- PMID: 16987531
- DOI: 10.1016/j.jtbi.2006.08.002
Food webs robustness to biodiversity loss: the roles of connectance, expansibility and degree distribution
Abstract
We analyse the robustness of food webs against species loss by considering the influence of several structural factors of the networks, such as connectance, degree distribution and expansibility. The last concept refers to the absence of structural bottlenecks in the food web, whose removal separate the network into large isolate clusters. In theory networks with identical connectance can display different expansibility characteristics. Using the spectral scaling method we studied 17 food networks and classified them as good expansion (GE) and not-GE networks. The combination of GE properties and degree distribution of species permitted the classification of food webs into six different classes. These classes characterize the differences in robustness of food webs to species loss. While the webs having uniform degree distributions and displaying GE properties are the most robust to species loss, the presence of bottlenecks and skewed distribution of the number of links per species make food webs very vulnerable to primary removal of species.
Similar articles
-
Examining the potential effects of species aggregation on the network structure of food webs.Bull Math Biol. 2007 Jan;69(1):119-33. doi: 10.1007/s11538-006-9065-0. Epub 2006 Jul 11. Bull Math Biol. 2007. PMID: 16832732
-
Universal scaling relations in food webs.Nature. 2003 May 8;423(6936):165-8. doi: 10.1038/nature01604. Nature. 2003. PMID: 12736684
-
Generalized models reveal stabilizing factors in food webs.Science. 2009 Aug 7;325(5941):747-50. doi: 10.1126/science.1173536. Science. 2009. PMID: 19661430
-
A landscape theory for food web architecture.Ecol Lett. 2008 Aug;11(8):867-81. doi: 10.1111/j.1461-0248.2008.01193.x. Ecol Lett. 2008. PMID: 18445027 Review.
-
Food webs: reconciling the structure and function of biodiversity.Trends Ecol Evol. 2012 Dec;27(12):689-97. doi: 10.1016/j.tree.2012.08.005. Epub 2012 Sep 5. Trends Ecol Evol. 2012. PMID: 22959162 Review.
Cited by
-
Host specificity of parasitoids (Encyrtidae) toward armored scale insects (Diaspididae): Untangling the effect of cryptic species on quantitative food webs.Ecol Evol. 2018 Jul 13;8(16):7879-7893. doi: 10.1002/ece3.4344. eCollection 2018 Aug. Ecol Evol. 2018. PMID: 30250670 Free PMC article.
-
Non-random biodiversity loss underlies predictable increases in viral disease prevalence.J R Soc Interface. 2013 Dec 18;11(92):20130947. doi: 10.1098/rsif.2013.0947. Print 2014 Mar 6. J R Soc Interface. 2013. PMID: 24352672 Free PMC article.
-
The methane-driven interaction network in terrestrial methane hotspots.Environ Microbiome. 2022 Apr 5;17(1):15. doi: 10.1186/s40793-022-00409-1. Environ Microbiome. 2022. PMID: 35382875 Free PMC article.
-
An ecological network approach to predict ecosystem service vulnerability to species losses.Nat Commun. 2021 Mar 11;12(1):1586. doi: 10.1038/s41467-021-21824-x. Nat Commun. 2021. PMID: 33707438 Free PMC article.
-
Using food web dominator trees to catch secondary extinctions in action.Philos Trans R Soc Lond B Biol Sci. 2009 Jun 27;364(1524):1725-31. doi: 10.1098/rstb.2008.0278. Philos Trans R Soc Lond B Biol Sci. 2009. PMID: 19451123 Free PMC article. Review.
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources