Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2006 Oct 15:15 Spec No 2:R244-52.
doi: 10.1093/hmg/ddl233.

Mitochondrial DNA polymerase-gamma and human disease

Affiliations
Review

Mitochondrial DNA polymerase-gamma and human disease

Gavin Hudson et al. Hum Mol Genet. .

Abstract

The maintenance of mitochondrial DNA (mtDNA) is critically dependent upon polymerase-gamma (pol-gamma), encoded by the nuclear gene POLG. Over the last 5 years, it has become clear that mutations of POLG are a major cause of human disease. Secondary mtDNA defects characterize these disorders, with mtDNA depletion, multiple mtDNA deletions or multiple point mutations of mtDNA in clinically affected tissues. The secondary mtDNA defects cause cell and tissue-specific deficiencies of mitochondrial oxidative phosphorylation, leading to organ dysfunction and human disease. Functional genetic variants of POLG are present in up to approximately 0.5% of the general population, and pathogenic mutations have been described in most exons of the gene. Clinically, POLG mutations can present from early neonatal life to late middle age, with a spectrum of phenotypes that includes common neurological disorders such as migraine, epilepsy and Parkinsonism. Transgenic mice and biochemical studies of recombinant mutated proteins are helping to unravel mechanisms of pathogenesis, and patterns are beginning to emerge relating genotype to phenotype.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources