Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Dec;33(3):309-17.
doi: 10.1007/s11262-005-0070-4.

Amino acids 1 to 422 of the spike protein of SARS associated coronavirus are required for induction of cyclooxygenase-2

Affiliations

Amino acids 1 to 422 of the spike protein of SARS associated coronavirus are required for induction of cyclooxygenase-2

Mo Liu et al. Virus Genes. 2006 Dec.

Abstract

The causative agent of severe acute respiratory syndrome (SARS) has been identified as SARS-associated coronavirus (SARS-CoV). To evaluate the molecular mechanisms involved in the viral infection, in this study, we investigated the role of SARS-CoV Spike (S) protein in the regulation of cyclooxygenase-2 (COX-2). Expression of COX-2 stimulated by the S protein was verified by RT-PCR and western blot assay. To explore the relationship between S and COX-2, we constructed a series of plasmids containing truncated N-terminal fragments of the SARS-CoV S gene (designated from Sa to Si), which encoded truncated S proteins, and investigated whether these truncated proteins could induce effective expression of COX-2 in 293T cells. Our results showed that S(d) that encoded a truncated S protein with 422 amino acid residues (from 1 to 422 aa), a part of 672 amino-acid S1 subunit is crucial for the induction of COX-2 expression. Immunofluorescence examinations also give the evidence that these N terminal 422 amino acids of the S protein were also required for the correct localization of the protein. We also compared S protein sequences of SARS-CoV isolated during the SARS break with that from palm civets, a possible source of SARS-CoV found in humans. S protein residues (344, 360), which mutated in the epitome from palm civet to human being were characterized in 3D modeling of 252-375 amino acid fragment. Collectively, these results indicate that S protein of SARS-CoV induces the expression of COX-2 and an N-terminal fragment of the Spike protein is crucial for the induction. Our finding may provide clue for the induction of inflammation by SARS-CoV and cast insight into the severity of the SARS epidemic.

PubMed Disclaimer

Figures

Fig. 1
Fig. 1
Effects of SARS-CoV S protein on COX-2 promoter and its expression. (A) HEK293T, COS-7 or A549 cells were co-transfected with COX-2-wt-Luc and pCMV-S, which is the spike encoding plasmid. Luciferase activity was measured as described in “experimental procedures”. The results were expressed as the mean ± SD of three independent experiments performed in triplicate. * P < 0.05 compared with control vector. (B) To detect COX-2 expression, transiently transfecred pCMV-S into HEK293T cell, after 24 h serum starvation, cell extracts were separated by SDS-PAGE in a 12% gel and followed by being transferred to nitrocellulose membrane. The expression of COX-2 and the S protein level were shown by western blot using anti-COX-2 antibody and anti-flag protein antibody, respectively. Similar results were obtained in five independent experiments
Fig. 2
Fig. 2
Identification of the functional regions in SARS-CoV S protein mediating COX-2 expression. (A) Structures of wild-type and deletion mutant forms of SARS-CoV S protein and their inducibility to COX-2 expression. Boxes represent the structure of different constructs of S protein with the length indicated above. (B) For COX-2 expression, transiently transfected a series of truncated S mutant encoding plasmids which can induce the activity of COX-2 promoter in HEK293T cells, the expression of COX-2 and the S mutant protein were shown by western blot using anti-COX-2 antibody and anti-flag protein antibody, respectively. (C) HEK293T cells were transiently transfected with a series of truncated mutants, after 24 h serum starvation, luciferase activity were determined. The results were expressed as the mean ± SD of three independent experiments performed in triplicate. *P < 0.05 compared with full-length of S
Fig. 3
Fig. 3
Identification of the location of functional regions in SARS-CoV S protein mediating COX-2 expression. COS-7 cells were transfected with pCMV-S (A), pCMC-S1–255 (B), pCMV-S1–422 (C) and pCMV-S255–1255 (D), respectively. 24 h after transfection, localizations were detected by anti-flag antibody
Fig. 4
Fig. 4
The important sites of N-terminal domain of Spike protein. (A) Representation of the 3D structure of S272–375 domain of Spike protein. Three residues of Spike protein of SARS-CoV are show in colorful balls. G311 was yellow, K344 was red and F360 was green. (B) A view identical to that in A except that the molecule has been rotated 90° about the vertical axis. (C) A view identical to that in A except that the molecule has been rotated 90° about the horizontal axis

Similar articles

Cited by

References

    1. Peiris J.S., Lai S.T., Poon L.L., Guan Y., Yam Y.L., Lim W., Nicholls J., Yee W.K., Yan W.W., Cheung M.T., Cheng V.C., Chan K.H., Tsang D.N., Yuang R.W., Ng T.K., Yuen K.Y. Lancet. 2003;361:1319–1325. doi: 10.1016/S0140-6736(03)13077-2. - DOI - PMC - PubMed
    1. Rota P.A., Oberste M.S., Monroe S.S., Nix W.A., Campagnoli R., Icenogle J.P., Penaranda S., Bankamp B., Maher K., Chen M.H., Tong S., Tamin A., Lowe L., Frace M., DeRisi J.L., Chen Q., Wang D., Erdman D.D., Peret T.C., Burns C., Ksiazek T.G., Rollin P.E., Sanchez A., Lick S., Holloway B., Limor J., McCaustland K., Olsen-Rasmussen M., Fouchier R., Gunther S., Osterhaus A.D., Drosten C., Pallansch M.A., Anderson L.J., Bellini W.J. Science. 2003;300(5624):1394–1399. doi: 10.1126/science.1085952. - DOI - PubMed
    1. Marra M.A., Jones S.J., Astell C.R., Holt R.A., Brooks-Wilson A., Buttereld Y.S., Khattra J., Asano J.K., Barber S.A., Chan S.Y., Cloutier A., Coughlin S.M., Freeman D., Girn N., Grith O.L., Leach S.R., Mayo M., McDonald H., Montgomery S.B., Pandoh P.K., Petrescu A.S., Robertson A.G., Schein J.E., Siddiqui A., Smailus D.E., Stott J.M., Yang G.S., Plummer F., Andonov A., Artsob H., Bastien N., Bernard K., Booth T.F., Bowness D., Czub M., Drebot M., Fernando L., Flick R., Garbutt M., Gray M., Grolla A., Jones S., Feldmann H., Meyers A., Kabani A., Li Y., Normand S., Stroher U., Tipples G.A., Tyler S., Vogrig R., Ward D., Watson B., Brunham R.C., Krajden M., Petric M., Skowronski D.M., Upton C., Roper R.L. Science. 2003;300:1399–1404. doi: 10.1126/science.1085953. - DOI - PubMed
    1. Gallagher T.M., Buchmeier M.J. Virology. 2001;279:371–374. doi: 10.1006/viro.2000.0757. - DOI - PMC - PubMed
    1. Holmes K.V.N. Engl. J. Med. 2003;348:1948. doi: 10.1056/NEJMp030078. - DOI - PubMed

Publication types

MeSH terms