Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2006 Nov;56(5):965-70.
doi: 10.1002/mrm.21043.

Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition

Affiliations
Free article

Localized short-echo-time proton MR spectroscopy with full signal-intensity acquisition

Vladimír Mlynárik et al. Magn Reson Med. 2006 Nov.
Free article

Abstract

We developed a short-echo-time (TE) sequence for proton localized spectroscopy by combining a 1D add-subtract scheme with a doubly slice-selective spin-echo (SE) sequence. The sequence preserves the full magnetization available from the selected volume of interest (VOI). By reducing the number of radiofrequency (RF) pulses acting on transverse magnetization, we were able to minimize the TE to the level that is achievable with the stimulated echo acquisition mode (STEAM) technique, and also gained a twofold increase in sensitivity. The use of an adiabatic pulse in the add-subtract localization improved the efficiency of excitation in spatially inhomogeneous RF fields, which are frequently encountered at high magnetic fields. The localization performance and sensitivity gains of this method, which is termed SPin ECho, full Intensity Acquired Localized (SPECIAL) spectroscopy, were demonstrated in vivo in rat brains. In conjunction with spectroscopic imaging, a 2-microl spatial resolution was accomplished with a signal-to-noise ratio (SNR) above 30, which is usually sufficient for reliable quantification of a large number of metabolites (neurochemical profile).

PubMed Disclaimer

Publication types

LinkOut - more resources